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Abstract—Next Generation Sequencing (NGS) is a family of technologies for reading the DNA or RNA, capable of producing whole
genome sequences at an impressive speed, and causing a revolution of both biological research and medical practice. In this exciting
scenario, while a huge number of specialized bio-informatics programs extract information from sequences, there is an increasing need
for a new generation of systems and frameworks capable of integrating such information, providing holistic answers to the needs of
biologists and clinicians. To respond to this need, we developed GMQL, a new query language for genomic data management that
operates on heterogeneous genomic datasets. In this paper, we focus on three domain-specific operations of GMQL used for the
efficient processing of operations on genomic regions, and we describe their efficient implementation; the paper develops a theory of
binning strategies as a generic approach to parallel execution of genomic operations, and then describes how binning is embedded into
two efficient implementations of the operations using Flink and Spark, two emerging frameworks for data management on the cloud.
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1 INTRODUCTION

N EXT Generation Sequencing (NGS) is a technology for
reading the DNA that is changing biological research

and will change medical practice; thanks to the availability
of millions of whole genome sequences, genomic data man-
agement may soon become the biggest and most important
“big data” problem of mankind.

Data management in genomics applies to three different
phases. Primary analysis is concerned with producing raw
data in the form of short reads of DNA or RNA sequences;
secondary analysis is concerned with extracting the DNA or
RNA sequences from the reads (alignment) or evaluating (or
calling) specific features from aligned files (e.g., mutations or
peaks of expression); this processing is performed by a large
number of bioinformatics tools, some developed by using
Pig [44] or Spark [53]. Data management systems developed
so far concentrate on secondary analysis (e.g., [31], [47]);
Adam [2], an offset of Spark dedicated to genomics, is also
focused on secondary analysis. But the most important,
emerging problem is the so-called tertiary analysis (see Fig.
1), which is concerned with sense making, e.g., discovering
how heterogeneous regions interact with each other, by
integrating heterogeneous DNA features, such as variations
(e.g., a mutation in a given DNA position), or peaks of
expression (e.g., regions with higher DNA read density), or
structural properties of the DNA, e.g., break points (where
the DNA is damaged) or junctions (where DNA creates
loops).

In this context, we are currently developing a new,
holistic approach to genomic data modelling and querying
that uses cloud-based computing to manage heterogeneous
data produced by NGS technology [33]. Our approach is
based on a new, high-level query language, called GenoMet-
ric Query Language (GMQL), which enables building new
datasets from a repository of existing datasets, using alge-
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Fig. 1. Phases of genomic data analysis.

braic operations. GMQL can be used for querying thousands
of samples of processed data, which are becoming available
at large sequencing centers, and are being assembled by
international consortia (such as ENCODE [21], TCGA [52],
and 1000 Genomes Project [1]).

Our approach is truly multidisciplinary, as it combines
data modeling, big data, cloud computing, systems archi-
tecture and parallel algorithms; in addition, it applies to
genomics, whose relevance is huge and emerging. To the
best of our knowledge, no academic group is specifically
focusing on tertiary data analysis; the spin-off company
Paradigm41, also focuses on tertiary analysis, by developing
genomic adds-on to SciDB [5]; they advocate the use of
SciDB, a specialized scientific database, rather than cloud
computing. While our work is centered upon the outcomes
of NGS technology, other research is concerned with the in-
tegration of omics datasets, as resulting, e.g. from genomics,
proteomics, and interactomics; among them, [26] addressed
data integration and parallel processing of microarray data,
focusing on mutations and pharmacogenomics.

In our initial release, available for download2, we trans-
lated GMQL to PIG [8]; we are currently working towards
a new GMQL release, that will become available during
2016, and will support two parallel implementations, re-

1. Founded by Turing award Mike Stonebraker.
2. http://www.bioinformatics.deib.polimi.it/genomic computing/



IEEE TRANSACTIONS ON COMPUTERS 2

spectively using Flink [6] and Spark [9], two emerging
data frameworks. Architecture design is driven by strong
platform portability requirements: the two implementations
differ only in the encoding of about twenty data man-
agement operations, while the compiler, logical optimizer,
and APIs/UIs are independent from the adoption of ei-
ther framework. In this paper, we focus on the parallel
implementation of three domain-specific GMQL operations
on the cloud, called map, cover and join, each with several
variants (e.g., distal and mindistance joins, summit and flat
variants for cover); they are the highly critical operations,
as the performance of GMQL depends essentially on these
operations.

In [12] we have presented a comparison of Flink and
Spark at work on much simpler abstractions for genomics;
in this paper, we extend that work by considering the
broader spectrum of domain-specific GMQL operations
(with a rich set of syntactic and semantic variants), we
fully develop algorithms for join, cover and map (with an
optimized, three-step approach to join evaluation) and we
develop a theory of binning strategies as a generic approach
to their parallel execution (which allows a simplification of
the parallel processing).

The remaining of this paper is structured as follows.
Section 2 describes the model describing DNA regions
and the main operations for computing result regions as
effect of domain-specific operations, named JOIN, MAP, and
COVER. Section 3 defines our implementation of domain-
specific operations using Flink and Spark, and in particular
develops binning algorithms used in order to parallelize
the operations over huge numbers of genomic regions.
Section 4 presents the evaluation of our implementation,
and discusses a number of optimizations and parameter
tunings which are needed to increase performance. Section 5
presents the state of the art and discusses other related cur-
rent approaches and implementations. Section 6 concludes.

2 GENOMIC APPLICATIONS

Genomic applications discussed in this paper share a com-
mon, simple model based on the notion of DNA region, i.e.
a portion of the genome placed within one chromosome
and further characterized by a start and stop position.
Regions are aligned with respect to a reference genome (e.g.
reference hg19 for the human species), therefore regions
are related to each other by a single system of coordi-
nates. We can think of a region as defined by the triple
<chromosome,start,stop>, e.g. <7,145677,678999>,
with start<stop, and it is possible to define operations
among them, such as taking two regions and computing
their union, difference, and intersection; these operations
produce a result when two regions are both on the same
chromosome, e.g. an intersection region is produced when
one end of either regions is enclosed within the two ends of
the other region. Every region may have a value describing
the properties of the region, called the region’s features; the
value can be missing, or it can be a single real number (e.g.,
if the region represents a portion of the DNA reacting to
a given treatment using an antibody, the value may be an
indication of the significance of the reaction), or as complex
as the sequence of amino acids which are present in the

region (i.e. a string of the letters A, C, G, T with a length
equal to stop-start; each position - or basis - can also be
associated with an encoded indication of the confidence of
that specific position). Thus, the value of a region can be
complex, and has to be associated with a given signature,
which depends on the type of experiment producing it.

We collect the regions which are produced by each
experimental condition (e.g. a specific cell culture) within
a file or sample; we then collect the samples produced by
the same experiment type (hence with the same signature)
within the same dataset; each sample within a dataset has a
unique identifier.

In summary, each region is represented as a quintuple:

Sample = 1837
Chromosome = 1
Start = 15834
Stop = 16135
Values = []

A GMQL query (or program) is expressed as a sequence
of GMQL operations with the following structure:

<var> = operation(<parameters>) <vars>

where each variable stands for a GMQL dataset. Operations
are either unary (with one input variable), or binary (with
two input variables), and construct one result variable;
all operations produce a result dataset consisting of sev-
eral samples, whose identifiers are either inherited by the
operands or generated by the operation. Most GMQL oper-
ations are extension of classic relational algebra operations,
twisted to the needs of genomics. Three domain-specific op-
erations, called COVER, JOIN and MAP, significantly extend
the expressive power of classic relational algebra.

In [33], we demonstrated the expressive power and
flexibility of GMQL through multiple biological examples,
including finding distal bindings in transcription regulatory
regions, associating transcriptomics and epigenomics, and
finding somatic mutations in exons. The full GMQL data
model includes also metadata, which are not used in this
paper. Compared with languages which are currently in
use by the bioinformatics community, GMQL is declarative
(it specifies the structure of the results, leaving its com-
putation to each operation’s implementation) and high-level
(one GMQL query typically substitutes for a long program
which embeds calls to region manipulation libraries); the
progressive computation of variables recalls other algebraic
languages (e.g. Pig Latin, [8]). We next focus on the relevant
aspects of domain-specific GMQL operations for genomics.

2.1 Join

The JOIN operation applies to two datasets, respectively
called anchor and experiment; the operation produces a
result sample for every pair of samples of the operand
datasets, whose identifier is obtained by applying a hash
function to the identifiers of the operand samples; the
regions within each result sample are generated from the
regions of the operand samples that satisfy a genometric
predicate; their coordinates are computed according to four
region composition options and their values are obtained
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by concatenating the values of the regions of the operands3.
Thus, the join operation produces results that can grow
quadratically both in the number of samples and of regions;
hence, it is the most critical GMQL operation from a com-
putational point of view.

Genometric predicates are based on the notion of ge-
nomic distance, defined as the number of bases (i.e. nu-
cleotides) between the closest opposite ends of two regions,
measured (using a numeric type, e.g. Integer) from the
right end of the region with left end lower coordinate.4

A genometric predicate is a sequence of distal conditions,
defined as follows:
• UP/DOWN denotes the upstream and downstream direc-

tions of the genome. They are interpreted as predicates
that must hold on the region of the experiment; UP is true
when it is in the upstream genome of the anchor region5.
When this clause is not present, distal conditions apply
to both the directions of the genome.

• MD(K) denotes the minimum distance clause; it selects the
K regions of the experiment at minimal distance from
the anchor region. When there are ties (i.e. regions at the
same distance from the anchor region), regions of the
experiment are kept in the result even if they exceed the
K limit.

• DLE(N) denotes the less distance clause; it selects all the
regions of the experiment such that their distance from
the anchor region is less than or equal to N bases6.

• DGE(N) denotes the greater distance clause; it selects all
the regions of the experiment such that their distance
from the anchor region is greater than or equal to N
bases.

Genometric clauses are composed by strings of distal condi-
tions; a genometric clause is well-formed only if it includes
the less distance clause; we expect all clauses to be well
formed, possibly because the clause DLE(Max) is automati-
cally added at the end of the string, where Max is a problem-
specific maximum distance.
Examples. The following strings are legal genometric pred-
icates:

DGE(500), UP, DLE(1000), MD(1)
DGE(50000), UP, DLE(100000)
DLE(2000), MD(1), DOWN
MD(100), DLE(3000)

Note that different orderings of the same distal clauses may
produce different results; this aspect has been designed in

3. See [33], where a full account of the join operation is presented,
including region composition options, join partitioning, and metadata
management.

4. With our choice of interbase coordinates, intersecting regions have
distance less than 0 and adjacent regions have distance equal to 0; if two
regions belong to different chromosomes, their distance is undefined
(and predicates based on distance fail).

5. Upstream and downstream are technical terms in genomics, and they
are applied to regions on the basis of their strand. For regions of the
positive strand, UP is true for those regions of the experiment whose
right end is lower than the left end of the anchor, and DOWN is true for
those regions of the experiment whose left end is higher than the right
end of the anchor. For the negative strand, ends and disequations are
exchanged.

6. DGE(-1) is true when the region of the experiment overlaps with
the anchor region; DGE(0) is true when the region of the experiment is
adjacent to or overlapping with the anchor region.

Fig. 2. Different semantics of genometric clauses due to the ordering
of distal conditions. The vertical bar is set at distance 100 from the
reference region. In case (A) the minimum distance region is first se-
lected (on the left) and then excluded by the distance predicate (on the
right), therefore no region is produced. In case (B) the distance predicate
selects two regions (on the left), out of which the minimum distance
region is selected (on the right).

order to provide all the required biological meanings, and
is further discussed in Section 3.1.1, where we discuss distal
clause evaluation.
Example. In Fig. 2 we show an evaluation of the
following two clauses relative to an anchor region: A:
MD(1),DLE(100), B: DLE(100),MD(1). In case A, the
MD(1) clause is computed first, producing one region which
is next excluded by computing the DLE(100) clause; there-
fore, no region is produced. In case B, the DLE(100) clause
is computed first, producing two regions, and then the
MD(1) clause is computed, producing as result one region7.

Similarly, the clauses A: MD(1),UP and B: UP,MD(1)
may produce different results, as in case A the minimum
distance region is selected regardless of streams and then
retained iff it belongs to the upstream of the anchor, while
in case (B) only upstream regions are considered, and the
one at minimum distance is selected.

2.2 Map
MAP is a binary operation over two datasets, respectively
called reference and experiment. Let us consider one refer-
ence sample, with a set of reference regions; the operation
computes, for each sample in the experiment, new values
produced by aggregation functions over the values of the
experiment regions that intersect with each reference region;
we say that experiment regions are mapped to reference regions.
The operation produces a regular structure, called genomic
space, where each experiment sample is associated with a
row, each reference region with a column, and each matrix
entry is a single value8. Thus, a MAP operation allows a
quantitative reading of experiments with respect to the ref-
erence regions; when the biological function of the reference
regions is not known, MAP helps in extracting the most
interesting regions out of many candidates.
Example. Fig. 3 shows the effect of this MAP operation on
a small portion of the genome; the input consists of one

7. The two queries can be expressed as: produce the minimum distance
region iff its distance is less than 100 bases and produce the minimum distance
region after 100 bases.

8. Biologists typically consider the transposed matrix, because there
are fewer experiments (on columns) than regions (on rows). Such
matrix can be observed using heat maps, and its rows and/or columns
can be clustered to show patterns.
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Fig. 3. Example of map using one sample as reference and three
samples denoting mutations as experiment, using the Count function.

reference sample and three experiment samples, the output
consists of three samples with the same regions as the
reference sample, whose features corresponds to the number
of mutations which intersect with those regions. The result
can be interpreted as a (3× 3) genome space.

2.3 Cover

The COVER operation applies to a single dataset and com-
putes a single sample from several input samples by taking
into account region intersections. In the basic COVER oper-
ation, each resulting region r is the contiguous intersection
of at least minAcc and at most maxAcc regions ri in the in-
put samples; minAcc and maxAcc are called accumulation
indexes9.

Resulting regions may have new attributes Ar, calcu-
lated by means of aggregate expressions over the attributes
of the contributing regions. Jaccard Indexes10 are stan-
dard measures of similarity of the contributing regions ri,
added as default attributes. Three variants of the basic
COVER are biologically relevant:

• The HISTOGRAM variant returns the nonoverlapping re-
gions contributing to the cover, each with its accumu-
lation index value, which is assigned to the AccIndex
region attribute.

• The FLAT variant returns the union of all the regions
which contribute to the COVER (more precisely, it returns
the contiguous region that starts from the first end
and stops at the last end of the regions which would
contribute to each region of the COVER).

• The SUMMIT variant returns only those portions of the
result regions of the COVER where the maximum number
of regions intersect (more precisely, it returns regions
that start from a position where the number of intersect-
ing regions is not increasing afterwards and stops at a

9. The keyword ANY can be used as maxAcc, and in this case no
maximum is set (it is equivalent to omitting the maxAcc option); the
keyword ALL stands for the number of samples of the operand, and
can be used both for minAcc and maxAcc; these can also be expressed
as arithmetic expressions built by using ALL (e.g., ALL-3, ALL+2,
ALL/2); cases when maxAcc is greater than ALL are relevant when the
input samples include overlapping regions.

10. The JaccardIntersect index is calculated as the ratio between
the lengths of the intersection and of the union of the contributing
regions; the JaccardResult index is calculated as the ratio between
the lengths of the result and of the union of the contributing regions.

Fig. 4. Accumulation index and COVER results with three different mi-
nAcc and maxAcc values.

position where either the number of intersecting regions
decreases, or it violates the max accumulation index).

Example. Fig. 4 shows three applications of the COVER
operation on a small portion of the genome; the figure
shows the regions resulting from setting the MinAcc and
MaxAcc parameters respectively to (2, 2), (1, 2), and (2, 3).

3 IMPLEMENTATION OF OPERATORS

Several general features apply to all operators and con-
tribute to the generation of an highly parallel implemen-
tation:
• Use of by-pair parallelism, generated by splitting op-

erations into independent computations over pairs of
samples.

• Use of by-chromosome parallelism, generated by parti-
tioning the operations by chromosome; as result, regions
are only produced from input regions with matching
chromosomes.

Partitioning by chromosome is suboptimal due to the differ-
ence in size of chromosomes, but it is a ”natural” partition,
as no region spans across chromosomes. The potential de-
gree of parallelism depends on the product of the pairs of
samples and of chromosomes11. However, parallelism is not
sufficient for the domain-specific GMQL operations, as the
number of regions that are candidate to result from a pair
of samples within a chromosome is potentially very large (it
can reach billions of candidates in practical cases).

In the first implementation we translated GMQL to PIG
and we used simple user-defined Java functions for comput-
ing results by taking advantage of the ordering of regions
along the reference genome, with limited parallelism; we
adapted methods developed for temporal databases [25]. In
the current implementation we use binning, i.e. the subdi-
vision of the genome into much smaller, identical partitions
or bins currently in use by databases of annotations of the
UCSC Genome Browser [30] in order to speed up the search
for portions of the genome that must be loaded within the
same browser window. To the best of our knowledge, bin-
ning has not been used for parallelizing genomic operations;
the use of time portions of equal size for temporal interval
joins is studied in [3] in the context of map-reduce. We next
focus on the implementation of domain-specific operations.

11. The number of chromosomes is fixed, e.g., they are 23 in compu-
tations on humans.
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3.1 Join
Before discussing the join implementation, we discuss the
clause evaluation order, the binning strategy, and the inter-
action between the binning strategy and the query-specific
search space.

3.1.1 Evaluation Steps
As we discussed in Section 2.1, the order of execution of
distal conditions influences the result; this depends on the
fact that the min distance clause (MD) clause is not com-
mutative with the greater distance clause (GLE) and with
the stream clause (UP/DOWN); the less distance clause DLE is
commutative with all other clauses, and stream and greater
distal clauses are commutative with each other. Thus. the
evaluation of a genometric predicate requires a sequence of
3 steps, where clauses within each step are commutative and
each step can be missing:
• Step 1 includes the DLE clause of the query and the

stream and greater distal clauses which precede the MD
clause; if a query-specific DLE clause is not present, then
DLE(Max) is added, where Max denotes the maximum
biological distance12.

• Step 2 includes the MD clause.
• Step 3 includes the stream and greater distal clauses after

the MD clause.
Examples. The genometric predicate:

DGE(500), MD(10), UP

produces the following three steps:

Step 1: DGE(500), DLE(Max)
Step 2: MD(10)
Step 3: UP

The genometric predicate: DOWN, MD(10), DGE(2000),
DLE(5000) produces the following three steps:

Step 1: DOWN, DLE(5000)
Step 2: MD(10)
Step 3: DGE(2000)

Some simpler predicates may require a single step, e.g.
DGE(50000), UP, DLE(100000) is mapped to Step 1.

3.1.2 Binning and Search Space
In cloud computing, efficient execution is achieved through
parallelism; in genomic computing, such parallelism is
achieved by means of binning, i.e., partitioning the genome
into disjoint sections so that large computations can be split
and assigned to bins. The process of binning splits every
chromosome of the genome into several bins of equal size
S; for each chromosome, bins are progressively numbered
starting from 0 and the i-th bin spans from S × i to
S × (i + 1) − 1 . For a given bin size S, a point placed
at i bases from the chromosome start is assigned to the bin
b(i) = bi/Sc. Intervals between a left end li and a right end
ri are assigned to the bins between b(li) and b(ri).

In order to effectively evaluate distal clauses, each an-
chor regions is associated with its search space, consisting

12. If a query includes the clause DLE(M1) and M1 > Max, the
clause is turned into DLE(M) by the execution engine; users can set the
maximum biological distance of each query execution.

Fig. 5. Search spaces for three distal clauses, Step 1.

of intervals of bins that may include matching regions of the
experiment; search spaces are built according to the distal
conditions of Step 1; it includes all potential matches, as
Steps 2 and Step 3 are filters of the regions produced by
Step 1. Consider an anchor region with left end l and right
end r; let M be the maximum distance and let Bc denote
the last bin of each chromosome c 13. Then:
• If the clause is LTE(d), then the search space is the

interval of bins between b(l − d) (excluding bins with
i < 0) and b(r + d) (excluding bins with i > Bc).

• If the clause is LTE(d1) and GTE(d2), with d1 > d2,
then the search space is the two intervals of bins between
b(l − d1) and b(l − d2) (excluding bins with i < 0) and
between b(r + d2) and b(r + d1) (excluding bins with
i > Bc).

• If the clause is GTE(d1), then the search space is the
two intervals of bins between b(l − M) and b(l − d1)
(excluding bins with i < 0) and between b(r + d1) and
b(r +M) (excluding bins with i > Bc).

When the UP/DOWN clause is present, the search space
is limited to the upstream/downstream directions of the
genome. A representation of the search space for the anchor
region as effect of the DLE and DGE clauses is shown in Fig. 5
(cases 1 and 2); the third case shows the effects of combining
the DLE, DGE and DOWN clauses.

3.1.3 Evaluation of Distal Clauses in Step 1
This construction allows a parallel evaluation of join predi-
cates. In particular, the following theorem holds due to the
way in which search spaces are constructed:

Theorem 3.1. The join predicate between an anchor region and
any experiment region falling outside of its search space is false.

13. Given that chromosomes have different sizes, Bc is a specific
number for each chromosome.
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In addition, we would like to evaluate the Step 1 join predi-
cate between given regions of the anchor and experiment
in a given bin only, so as to generate the corresponding
result region only once, avoiding duplicates. The following
theorem provides a solution of this problem.

Theorem 3.2. If the Step 1 predicate between an anchor region
and an experiment region is true, it can be tested in a given bin,
denoted as testing bin.

Proof. We build the proof by considering four cases which
exhaustively cover the relationships between anchor and
experiment regions, and defining the testing bin for each
of them.
• Assume that the experiment is at the left of the anchor, i.e.

the experiment’s left end is strictly less than the anchor’s
left end and the experiment’s right end is less than or
equal to the anchor’s right end. Then, the testing bin
is the experiment bin with greatest number (the one at
the smallest distance from the anchor); the predicate can
be true only if the portion of experiment region within
the testing bin intersects with the search space. Some
examples are shown in Fig. 6, where the testing bin is
denoted by a thicker trait. The predicate can be true
in case (a) (when the testing bin falls within the search
space) and is false in case (b) (as the region is too close
to the anchor) and (c) (as the region is too distant from
the anchor).

• The case when the experiment is at the right of the anchor
is symmetric; in such case, the experiment’s right end
is strictly greater than the anchor’s right end and the
experiment’s left end is greater than or equal to the
anchor’s left end. Then, the testing bin is the experiment
bin with the smallest number; also in such case, the
predicate can be true only if the portion of experiment
region within the testing bin intersects with the search
space.

• Assume that the experiment is included within the anchor.
Recall that by construction the search space either prop-
erly includes the anchor region or does not overlap with
it. Thus, the experiment can satisfy the join predicate
only if it intersects with the search space in anyone of
its bins; conventionally, we may use as testing bin the
experiment bin with the smallest number. This case is
illustrated in Fig. 7.

• Finally, assume that the anchor is included in the experi-
ment. Then, the anchor is at negative distance from the
experiment, and again the search space either properly
includes the anchor region or does not overlap with it;
it follows that the join predicate between the region and
the anchor can be true only if the search space includes
the anchor. Conventionally, we may use as testing bin
the anchor bin with the smallest number. This case is
illustrated in Fig. 8.

Thanks to Theorem 3.2, at each bin B we evaluate Step 1
conditions just for those pairs of experiment and anchor
regions such that B is their testing bin; thus, we either
discard the pair of regions, or produce the resulting regions
exactly once. This result is used by the parallel execution
strategy which is next discussed.

Fig. 6. Experiment regions at the left of the search space.

Fig. 7. Experiment regions enclosed within the anchor region.

Fig. 8. Anchor region enclosed within the experiment region.

3.1.4 Join Execution Strategy in Flink and Spark

Fig. 9 illustrates the flow of Flink and Spark operators for
implementing a join operation. We recall that joins require
first to select the pairs of samples that need to be joined,
using a metadata predicate, and then to compute the result
regions, using a genometric predicate. The operation applies
to two datasets, respectively called anchor and experiment; as
a running example we consider the join with:

Step 1: DGE(140), DLE(500)
Step 2: MD(1)
Step 3: DOWN

computed on:

Anchor: Id, chromosome, start, stop
1 C1 150 160
1 C1 285 390
Experiment: Id, chromosome, start, stop
2 C1 10 20
2 C1 430 550
2 C1 750 780

Throughout the examples of this section, we do not consider
strands; in reality, join predicates evaluation is defined only

Fig. 9. Operators for encoding the Join algorithm in Flink and Spark.
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between regions with compatible strand14. We also do not
consider region values, they are carried along with each
region and concatenated in the result15.
• Block 1 (Metajoin) produces in output, for each anchor

sample, the join list of the experiment samples that must
be joined to it.
Example. The join list of sample 1 is [2].

• Block 2 (FlatMap) is responsible of copying regions to
the bins:

– For every anchor region and bin b intersecting with
the search space, it generates a copy of the anchor
region for every bin b of the search space, by adding
to it the attribute Bin (b) and the attribute SBin (the
bin where the anchor region starts.)

– For every sample of the join list and for every bin b
intersecting with each experiment region, it generates
a copy of the experiment region, by adding to it the
attribute Bin (b) and the attributes SBin (the bin
where the anchor region starts) and EBin (the bin
where the anchor region ends.)

Note that anchor regions are replicated at the bins of
their search space, computed in this block, and experi-
ment regions are replicated at the bins which intersect
with them. The added attributes allow to test with a
simple predicate if the current bin b is the testing bin
of a given pair of anchor and experiment regions, based
on the four cases of Theorem 3.2.
Example. With a bin size B = 100, the first anchor region
is copied to the bins 0, 2− 6, the second anchor region is
copied to the bins 0−8; the experiment regions is copied
to the bins 0, 4− 5, and 7.

• Block 3 (Join) joins the anchor and experiments by
chrom and bin. In this way, for any pair of anchor and
experiment samples to be joined and for any of their
anchor and experiment regions, all the relevant data are
available at all bins, hence also at their testing bin. This
operation is the most expensive, as it may join millions of
regions to millions of regions; it is effectively computed
by the Join operator, available in both frameworks.
Performance depends on the bin size, as smaller bin size
increases both replication and parallelism, therefore in
Section 4.2 we study its optimal tuning as a function of
data sizes and query parameters.
Example. The following pairs are produced:
Bin Chr Id1 SB1 L1 R1 Id2 L2 R2
B0 C1 1 B1 150 160 2 10 20
B4 C1 1 B1 150 160 2 430 550
B5 C1 1 B1 150 160 2 430 550
B7 C1 1 B1 150 160 2 750 780
B0 C1 1 B3 285 390 2 10 20
B4 C1 1 B3 285 390 2 430 550
B5 C1 1 B3 285 390 2 430 550
B7 C1 1 B3 285 390 2 750 780

• Block 4.1 (Join in Flink, FlatMap in Spark) performs Step
1, by computing the distance between the regions in
each row and then selecting only the rows of the testing
bins where the distal conditions hold; testing bins are

14. Positive and negative strands are not compatible, and they are
both compatible with undefined strands.

15. With big value sizes, it is convenient to project the values prior to
Block 1 and then join them to resulting regions within Block 5.

Fig. 10. Operators for encoding the Map algorithm in Flink and Spark.

determined as indicated in the four cases of the proof of
Theorem 3.2. This step is computed in parallel in each
bin, in Flink is included in the Join of step 3, in Spark
is a FlatMap.
Example. The following pairs are produced:
Bin Chr Id1 SB1 L1 R1 Id2 SB2 EB2 L2 R2 D
B4 C1 1 B1 150 160 2 B4 B5 430 550 270
B0 C1 1 B3 285 390 2 B0 B0 10 20 265
B7 C1 1 Bin3 285 390 2 B7 B7 750 780 360

• Block 4.2 (GroupBy, Sort, GroupReduce) performs Step
2, by selecting experiment regions based upon their min-
imal distance from anchor regions; it is implemented by
the GroupBy, Sort and GroupReduce operators, but
it requires data shuffling for collecting the experiment
regions at nodes where sorting by distance and top − k
selection can be performed. We can reduce data shuffling
with an alternative implementation, which adds a sort
operation at each bin, producing at each bin the top− k
regions; these needs to be moved, while all other regions
can be discarded. We discuss pros and cons of this
alternative implementation in Section 4.2.2.
Example. The following pairs are produced:
Bin Chr Id1 SB1 L1 R1 Id2 SB2 EB2 L2 R2 D
B4 C1 1 B1 150 160 2 B4 B5 430 550 270
B0 C1 1 B3 285 390 2 B0 B0 10 20 265

• Block 4.3 (FlatMap) performs Step 3, by further reducing
the filtered regions according to the distal conditions of
Step 3. It uses the FlatMap operator.
Example. In the example, the condition DOWN filters one
pair, producing:
Bin Chr Id1 SB1 L1 R1 Id2 SB2 EB2 L2 R2 D
B4 C1 1 B1 150 160 2 B4 B5 430 550 270

• Block 5 (FlatMap) is responsible of outputing the result-
ing pairs, by computing their sample identifier and their
region coordinates according to the coordinate composi-
tion option and is executed together with block 4.3
Example. We finally obtain the following result, where
a new sample identifier is generated as a hash function
of the identifiers of the two operands, and the resulting
region is obtained by concatenating the operand regions:
Id Chr Start Stop
Hash(1,2) Chr1 150 550

3.2 Map
The encoding of this problem as a sequence of operations for
Spark and Flink is shown in Fig. 10. The algorithm requires
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to bin the two datasets, to group them by sample pair, chro-
mosome and binning, to compute intersections within the
bins, to compute aggregate functions, and output the results
for each sample pair. The complexity of this problem grows
quadratically with the sizes of the reference and experiment
dataset. In the example, we count the experiment regions
intersecting with reference regions; we consider:

Anchor: Id, chromosome, start, stop
1 C1 150 235
Experiment: Id, chromosome, start, stop
2 C1 10 230

• Block 1 (Metajoin) produces in output, for each reference
sample, the map list of the experiment samples that must
be mapped to it.

• Block 2 (Experiment Binning) is responsible of copying
experiment regions to the bins. For every experiment
region and bin b intersecting with the experiment, it
generates a copy of the region for every bin b; only
the attributes which are used by aggregate functions are
copied.
Example. With bins of size 100, the following copies are
generated:
Id Chr Bin Start Stop
2 c1 0 10 230
2 c1 1 10 230
2 c1 2 10 230

Note that a list of attribute values is generated, but no
attribute value is needed for computing the COUNT.

• Block 3 (Reference Binning) is responsible of copying
reference regions to the bins. For every reference region
of a given sample, for every bin b intersecting with the
reference, and for every experiment samples in its map
list, a copy of the reference region is built, having as at-
tributes the concatenation of Id, Chr, Bin, Start,
Stop of the reference with the Eid of the experiment
and with a new attribute H obtained by hashing all the
attributes except the bin; this attribute is later used for
assembling all copies relative to the same reference and
experiment regions.
Example. The following copies are generated:
Id Chr Bin Start Stop Eid H
1 c1 1 150 235 2 567
1 c1 2 150 235 2 567

• Block 4 (LeftJoin) is responsible of computing a partial
map within each bin. It joins references and experiment
by Eid, Chr and Bin; if the join succeeds, it further se-
lects resulting tuples by considering only the bins where
either the reference region or the experiment region start
(note that this bin exists and is unique by construc-
tion). At each selected pair, a portion of the aggregate
function is computed. A new region is built, having
as attributes the concatenation of Chr, Bin with Rid,
Start, Stop, H of the reference and EId, EStart,
EStop, V of the experiment; V stores the experiment
values to be used by the aggregate functions (in the case
of Count, it stores 1.) If the join fails, thanks to the left
join constructor, all the reference information is stored to
the result, with null values stored for the experiment; in
this way, all reference regions are correctly accounted.
Example. The following copies are generated, and the
second one is then filtered:
Chr Bin RId Start Stop H EId EB EStart Estop V

Fig. 11. Operators for encoding the Cover algorithm in Flink and Spark.

c1 1 1 150 235 567 2 c1 1 10 230 [1]
c1 2 1 150 235 567 2 c1 2 10 230 [1]

• Block 5 (Assembling) is responsible of assembling all
copies corresponding to the same reference and exper-
iment at one node, through data shuffling; the operation
is performed thanks to a reduce phase which uses the
Hash attribute. Partial sums are performed for comput-
ing COUNT, and lists of attribute values are concatenated
within a bag.
Example. In the example, the two regions are reduced to
one, as they have the same hash attribute. The following
region is generated:
Rid Chr Start Stop Val
567 chr1 150 235 1

• Block 6 (Aggregating) is responsible of computing ag-
gregate functions, by applying them to the bag of values
built at block 5. This step does not apply to the running
example.

3.3 Cover

We discuss the computation of the Histogram, i.e. of the
accumulation index, as discussed in Section 2.3; all other
properties of the Cover are easily derived from that index.
A sequential algorithm for solving this problem consists of
scanning the genome from left to right and maintain the
accumulation count. At every start of a region the count is
incremented, and at every stop is decremented; the result
is given by every consecutive pairs of region ends with a
positive counter. In the following, we propose a parallel
version of this algorithm which relies on partitioning the
genome into bins. The operation flow is shown in Fig. 11.
Example. We show only three regions, with the peculiarity
that the first region stops where the second region starts and
that the third region intersects with two bins, whose size is
set to 500.

Id, Chr, Start, Stop
1 chr1 154 237
1 chr1 237 450
1 chr2 460 600
1 chr2 580 700

• Block 1 (FlatMap) is responsible for the binning. For each
region, it emits a new tuple for each bin it intersects. The
output tuple contains the chromosome, the bin and a
hash-map; in the hash map, we associate every region
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start with +1 and every region stop with -1. In the case
a region crosses the border between two bins, we split
it into two contiguous regions; one from the start to the
border and one from the border to the stop (if the regions
spans for more than two bins, the same procedure is
repeated).
Chr , Bin, HashMap[Int,Int]
chr1 0 {154->+1, 237->-1}
chr1 0 {237->+1, 450->-1}
chr2 0 {460->+1, 500->-1}
chr2 1 {500->+1, 600->-1}
chr2 1 {580->+1, 700->-1}

• Block 2 (GroupBy, Reduce) is responsible of grouping
the output dataset of the previous block by chromosome
and bin. Then, on each partition an associative function
is applied by the Reduce, which builds a single tuple
for each chromosome and bin containing a hash-map
with all the starts and stops of the regions in the bin;
notice that in the worst case, the size of this hash-map is
the same as the the length of the bin, therefore it fits in
memory.
Chr, Bin, HashMap[Int,Int]
chr1 0 {154->+1, 237->0, 450->-1}
chr2 0 {460->+1, 500->-1}
chr2 1 {500->+1, 580->+1, 600->-1, 700->-1}

• Block 3 (FlatMap) returns the list of produced regions,
along with their accumulation value, with each region
placed within a bin, thus creating a raw histogram:
Chr, Start, Stop, Count
chr1 154 450 1
chr2 460 500 1
chr2 500 580 1
chr2 580 600 2
chr2 600 700 1

• Block 4 (Filter) starts with two filters that separate the
regions properly contained in the bins (left filter) from
the regions overlapping with bins (right filter). The latter
regions must be merged when they are adjacent and with
the same count. This processing requires a GroupBy and
a ReduceGroup. In the specific example, the right filter is
applied to the regions of chromosome 2, producing the
region:
Chr, Start, Stop, Count
chr2 460 580 1

• Finally, Block 5 (Union) performs the union of the re-
gions separately produced, Block 6 computes the aggre-
gate (if any) using a Genometric Map operation and then
(DataSink) writes them to the disk; it generates:
Chr, Start, Stop, Count
chr1 154 450 1

chr2 460 580 1
chr2 580 600 2
chr2 600 700 1

3.4 Code Examples in Flink and Spark
GMQL is supported by in the context of a large project for
genomic data management; in particular, GMQL queries are
interpreted by a Scala compiler which produces either a
Flink or Spark execution plan by invoking the respective
APIs. The full translation and excution architecture of the
system is outside the scope of this paper.

In this section, we describe Scala-like pseudocode for the
implementation of a portion of the Map operation in Flink
and Spark. Specifically, Fig. 12 shows the Flink implemen-
tation of Block 4 of Section 3.2, where a coGroup operation

Fig. 12. Pseudocode for Block 4 of the Map algorithm in Flink.

is applied. Inside the operation, invoked at line 2, we iterate
on all the regions of one reference sample (line 5) and then
on all the regions of the experiment samples (line 6); if an
overlap is found along compatible strands (lines 8-15), then
the counter of regions is incremented (line 16). Then, regions
are outputed by means of a Flink collector operation (line
22). Note that the Scala code embedding Flink operations is
executed in each node’s core in parallel for every bin; given
that we control the bin size, we make sure that the memory
size at each node is not exceeded.

The Spark implementation has a very similar pseu-
docode, based on CoGroup and Reduce; in the binning
phase (Block 2), the fields of the reference and experiment
are organized as key/value pairs, where the key is the
tuple (Eid, Chr and Bin) and the value is the rest of
the fields; then, line 2 is replaced in Spark implementation
with .cogroup(binnedExp).flatMap (i.e. the cascade
of two Spark operations coGroup and flatMap), without
the need of a collect command. However, Spark allows for
a second implementation, based on the LeftJoin operator,
that supports persistence, and therefore works with any bin
size16. In general, we kept the translation strategy to Flink
and Spark aligned, so as to allow for a fair performance
comparison (see Section 4.3); however, we also support
alternative implementations, so as to selectively take advan-
tage of the different features of the two frameworks.

Figure 13 shows the Flink implementation of Block 5 of
Section 3.2, with a grouBy operation followed by a reduce
operation; as discussed in Section 3.2, this phase is required
to reduce all the regions with the same hash attribute to just
one region. Spark supports a reduceByKey operator, that

16. The two implementations have no significant difference in perfor-
mance; leftJoin is currently missing in Flink.
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Fig. 13. Pseudocode for Block 5 of the Map algorithm in Flink.

ie equivalent to the cascade of groupBy and reduce17.

4 EXPERIMENTS

4.1 Experimental Setup
We performed our experiments on the Amazon Cloud, in
most cases with a small cluster of one master and five
slaves (m3.x2large); we used Flink-0.9.118 and Spark 1.52
19. We concentrate on Join and Cover (Map is very similar
to Join). The datasets are: TSS for references (one sample of
131780 short regions from UCSC transcription start sites),
and NARROW for experiments (1999 samples from Encode
Narrow Peak Dataset, which has a total of 143 million
regions and an average of 71915 regions per sample).

4.2 Join Optimization and Tuning
4.2.1 Optimal Bin Size
As discussed before, the rationale of binning is to reduce the
number of regions to be considered within each bin, instead
of computing chromosome-wide cross product; however,
regions that cross the binning borders must be replicated.
Large bins reduce replication of regions, but they lead to
producing and matching many pairs of regions within each
bin; conversely, short bins increase replication and therefore
the generation of matching regions that should not be pro-
duced in output.

The choice of a good bin size depends on many factors:
• Physical characteristics of the cluster: if the executors

have a large amount of memory, then larger bins can
be used, as the cost of computing larger cross products
in-memory is generally less than the cost of shuffling
regions.

• Total number of regions: when regions increase in num-
ber, smaller bins are needed in order to avoid huge cross
products;

• Average region length: when regions are longer than
bins, they are going to produce many replicates, thus
increasing the cost of data shuffling and the number of
useless tests.

17. Thus, in the the pseudocode of Fig. 13, lines 2-5 should be
substituted by coGroupedResult.reduceByKey(.

18. flink-0.9.1/bin/yarn-session.sh -n 5 -jm 768 -tm 10752 -s 4;
yarn.heap-cutoff-ratio = 0.15.

19. default EMR parameters. spark-submit –master yarn –deploy-
mode client –num-executors 20 –executor-memory 5G.

Fig. 14. Execution time of Join as a function of bin size in logarithmic
scale for Flink.

Fig. 15. Execution time of Join as a function of bin size in logarithmic
scale for Spark.

Figure 14 shows the execution time of the join using
the Flink engine, for different choices of the distal predicate
(note that if the distance is less than 10K bases many more
resulting regions are produced w.r.t. distances of 1K or of
zero bases, yielding to longer execution times). In these
cases, bin size between 1K and 10k bases are optimal. Figure
15 shows the same experiment using the Spark engine; in
these cases, bin size close between 0.5 × 10K and 5 × 10K
are optimal.

Figure 16 shows the execution time of the cover using
the Flink engine, for different choices of the minimum and
maximum accumulation indexes; note that the performance
does not depend on accumulation indexes: once the his-
togram is computed (Block 3), then the extraction of result
regions (Blocks 4-6) has very similar costs for any choice of
accumulation indexes.

4.2.2 Data Shuffling and Ordering with MinDistance
As explained in Section 3.1.2, each reference region is repli-
cated to all the bins whose distance from the anchor region is
less than the query constant; this is implemented by Block 2
of Section 3.1.4, and may generate a large number of regions
satisfying the join condition at each bin, especially when
the query constant is set to Max, the maximum biological
region length. This in turn may cause a lot of data shuffling
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Fig. 16. Execution time of Cover for Flink.

Fig. 17. Comparison of data shuffling strategies.

for extracting the top-k regions of a minimal distance join;
to reduce overhead, we suggested an alternative imple-
mentation which adds an intermediate sorting step (see
Block 4.2 of Section 3.1.4). Figure 17 shows the network
statistics (retrieved using Ganglia20); the area in the first
rectangle corresponds to the standard execution and shows
heavy data shuffling, while the area in the second rectangle
refers to the alternative implementation which includes the
intermediate sorting step and shows a much lighter data
shuffling. We plan to further study shuffling optimizations,
along the work of [51].

4.3 Framework Comparison

Flink and Spark are both general-purpose data process-
ing platforms and top level projects of the Apache Soft-
ware Foundation (ASF). They have a wide field of appli-
cations and are usable for dozens of big data scenarios.
They support several extensions, e.g. to SQL-like queries
(Spark: Spark SQL, Flink: MRQL), graph processing (Spark:
GraphX, Flink: Spargel (base) and Gelly(library)), machine
learning (Spark: MLlib, Flink: Flink ML) and stream process-
ing (Spark Streaming, Flink Streaming). Both are capable
of running in standalone mode, yet most usage occurs on
top of Hadoop (YARN, HDFS). For what concerns their
differences21:
• Flink uses dataset variables and is optimized for cyclic

or iterative processes by using iterative transformations
on collections. This is achieved by an optimization of
join algorithms, operator chaining and reusing of par-
titioning and sorting. However, Flink is also a strong

20. http://ganglia.sourceforge.net/
21. A thorough comparison of Flink and Spark can be found

in http://stackoverflow.com/questions/28082581/what-is-the-
differences-between-apache-spark-and-apache-flink.

Fig. 18. Comparing Flink and Spark execution engines.

tool for batch processing. Flink streaming processes data
streams as true streams, i.e. data elements are immedi-
ately ”pipelined” though a streaming program as soon
as they arrive. This allows to perform flexible window
operations on streams.

• Spark is based on resilient distributed datasets (RDDs),
(mostly) in-memory data structures giving to Spark the
power of functional programming paradigms. Spark is
capable of big batch calculations by binning memory;
Spark streaming wraps data streams into mini-batches,
i.e. it collects all data that arrives within a certain period
of time and then runs a regular batch program on the
collected data. While the batch program is running, the
data for the next mini-batch is collected.

4.3.1 Approach
Figure 18 illustrates our approach; the data generation mod-
ule produces the input for several runs, then for each input
we invoke the compiler that produces two versions of Scala
code embedding calls to both Flink and Spark (along the
method discussed in section 3.4), then the two codes are
invoked, then the results are compared 22, testing that results
are identical and extracting as well the execution time for
each run.

4.3.2 Performance and Bin Size
Join execution times of Flink and Spark are compared in Fig.
19. For small bin sizes and restrictive clauses (less matching
regions) Flink has better performance, whereas for large bin
sizes and more permissive clauses (more matching regions)
Spark has better performance. In the Cover, pipeline par-
allelism results in faster execution times for Flink; Fig. 20
shows that the cover execution times are rather similar for
an optimal choice of the bin size, but Flink outperforms
Spark for either small or large bins. These results are co-
herent with our findings in [12], although more accurate.

A comparison of execution stages in Flink and Spark is
also presented in [12]; Flink supports pipeline parallelism
that may grant better performances to Flink than to Spark in
some cases; in general, Flink pipeline parallelism is blocked
by operations such as Sort or Collect23.

4.4 Performance Scaling with more AWS Nodes

We considered the execution of several joins with the same
reference and an increasing number of samples, using the
Flink execution engine, and scaling the size of the AWS
network from 5 to 10, 15, and 19 nodes24 Fig. 21 shows that

22. We developed about 150 short programs which test every feature
of GMQL.

23. http://data-artisans.com/apache-flink-new-kid-on-the-block/
24. Our AWS grant allows for configurations of at most 20 nodes.
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Fig. 19. Comparison of Join execution times as a function of bin size and
join clause in logarithmic scale for Flink and Spark.

Fig. 20. Comparison of Cover execution times as a function of bin size
in logarithmic scale for Flink and Spark.

the performance improves with largest networks with up
to 500 samples, but in the case of 1000 samples the perfor-
mance decreases; this is due to an excess of communication
overhead with the addition of nodes.

Table 1 shows the unit cost per query using AWS, which
charges a fixed price per node and time unit25. We note
that the cost per second of execution increases with the

25. The hour cost of an Elastic Map Reduce (EMR) instance is the
sum of the cost of nodes and the cost of EMR service. In our case
we used M3.XLarge instances which cost 0,266$/h plus 0,070$/h for
EMR service, yielding a total of 0,336$/h; therefore, a cluster of 6
nodes (5 slaves + 1 coordinator) of EMR costs 2,016$/h. Instances are
paid hourly but we run batches of several experiments, thus we can
redistribute execution costs to each query weighted by the execution
time in seconds. For example, if a query takes 20 seconds to execute,
then the cost of that query is 0,0112$.

Fig. 21. Scaling of execution time by increasing the number of AWS
nodes.

growth of the network size, but this is compensated by a
decreased execution time (see Fig. 21). However, with 1000
samples and 19 slave nodes, we note both an increase of
cost and of execution time. An elastic system could benefit
of constant monitoring of execution times, by dynamically
shutting down nodes when such behavior occurs26.

# of samples 6 nodes 11 nodes 16 nodes 20 nodes
50 samples 0,0112 0,0205 0,0299 0,0373
100 samples 0,0168 0,0236 0,0403 0,0467
500 samples 0,0644 0,0770 0,0896 0,0933
1000 samples 0,1120 0,1232 0,1419 0,3640

TABLE 1
Unit cost of execution per sample with different cluster sizes.

5 RELATED WORK

Several organizations are considering genomics at a global
level. Global Alliance for genomics and Health27 is a large
consortium of over 200 research institutions with the goal
of supporting voluntary and secure sharing of genomic and
clinical data; their work on data interoperability is pro-
ducing a conversion technology for the sharing of data on
DNA sequences and genomic variation [23]. Google recently
provided an API to store, process, explore, and share DNA
sequence reads, alignments and variant calls, using Google’s
cloud infrastructure [24].

We compare our work with recent papers on genomic
data management. Works by Röhm and Blakeley [40], by
Tata, Patel et. al. [47], and by Bafna et al. [11], address
the querying of genomic data using either SQL (in the
former case) or SQL extensions (in the latter two cases). [40]
highlights the performance bottlenecks of conventional SQL
optimization when dealing with domain-specific functions
and parallelization. Tata, Patel et. al. developed Periscope
[47], a system supporting matching operators over DNA
sequences, encoded as character strings; they report fast
execution times. Several domain-specific extensions are em-
bedde within SQL in [11], to overcome SQL limitations
in expressing genomic computations. SCORE [15] supports
the embedding of user-defined functions within SQL and
generates highly parallel execution plans on clusters.

Other works have proposed the embedding of query
processing functions within libraries that can be integrated
within programs [14], [38]. In particular, [38] presents a
rather elegant mathematical formalism, based on set alge-
bra, delivered as the Genomic Region Operation Kit (GROK)
library. In comparison, GROK supports lower-level abstrac-
tions than GMQL and some low-level operations (e.g., flip-
ping regions) that are not directly supported by GMQL, but
they must be embedded into C++ programming language
code. Furthermore, high-level declarative operations, such
as JOIN and MAP, can be encoded in GROK, but they
must be invoked from line editors or C++ programs. GROK
shows excellent performance on desktop systems, but it
is unsuitable for parallelization and does not deal with
metadata.

26. However, such query-specific elastic system cannot be easily
developed in AWS, as configuration switching is time expensive.

27. http://genomicsandhealth.org/

http://genomicsandhealth.org/
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Several other tools focus on specific data formats or
tackle specific needs and processing requirements. Among
them, BEDTools [39] and BEDOPS [34] apply to the BED
format, i.e. to a format based on regions; they either pro-
cess regions of individual samples or compare regions of
two samples, therefore multi-sample processing requiring
verbose scripts. A functional comparison of these tools
with GMQL is published as supplemental material to [33],
where we illustrate how biologists would comparatively
build a long query with the three approaches. BEDTools and
BEDOPS can be used from within software environments for
bioinformatics (e.g., BioPerl, BioPython, R and Bioconductor),
but are not designed for cloud computing.

A recent work by Nordberg et al. [36] presents BioPig, a
set of extensions for specific NGS analysis tasks to the Pig
Latin data processing language [37]. BioPig includes three
modules that can be used in the early phase of NGS data
analysis for processing the raw read data files produced
by NGS machines. SeqPig [44] is another collection of sim-
ilar modules to manipulate, analyze and query sequencing
datasets. The work by Weiwiorka et al. [53] presents anal-
ogous analysis tasks implemented on Apache Spark [54]. All
these works are complementary to our, as they apply on
NGS read data instead of on processed data.

One approach to efficiently compute interval joins in
the Hadoop ecosystem frameworks uses indexed structures
[19], [13]; this approach is not feasible in our application,
where we have to directly read from experimental data
files. An alternative way, more suitable for GMQL, is to
implement algorithms which partition the join operands in
order to speed up the evaluation. In [16] the authors propose
an algorithm based on data binning; our algorithms differ
from their proposal in the way we check the intersection
and avoid output duplicates. Recently, Afrati et al. [3] fur-
ther analysed binning-based algorithm in order to assess
computation bounds. One other main difference with all of
those approaches is that our algorithms are implemented
upon frameworks at a higher than MapReduce. For Spark,
similar problems have been addressed by the GeoSpark [49]
and Magellan [32] projects. To the best of our knowledge,
spatial joins have not been tackled by the Flink community.

6 CONCLUSIONS

In this paper, we described three domain-specific operations
of GMQL; we introduced binning as a general approach
to the parallelization of genomic operations; we identified
the trade-offs due to the bin dimensions; we proved that,
although multiple bins may carry the result of region com-
parison, the result can be safely extracted from a single bin;
and we explained how the binning logic is implemented by
using Flink and Spark.

Experiments demonstrate that the bin size is a critical
parameter for the overall parformance of domain-specific
oparations; based on experiments, we will adopt a bin
size of 10K bases for map and join and of 1M bases for
cover both in Spark and Flink; we will also continue the
development of GMQL on both systems, as the experients
do not demonstrate a clear winner between the two engines.

We also showed the scaling of performance in a multi-
node cloud computing network; adding computing power

increments the performance but at an increasing cost per
sample; moreover, above a given threshold, an increase in
the number of nodes causes a loss in performance, given
the complexity of multi-node computation.

The experiments demonstrate that domain-specific
GMQL operations scale extremely well when challenged by
very large datasets; therefore, GMQL is an ideal formalism
to cope with big queries of today’s and tomorrow’s genomic
computing. We are using GMQL in advanced biological
research, for understanding how topological domains, i.e.
recently discovered functional subdivisions of the genome
[17], include genes which are highly expressed in either
normal or tumor cells. This problem is addressed by a very
simple GMQL program, which computes a MAP of RNAseq
expression data for highly expressed genes over the regions
corresponding to each topological domain; we use TCGA
[52] expression datasets, having up to one thousand samples
for each normal tissue or cancer types; each such query runs
in about 3 minutes, hence a complete pipeline iterating over
20 tissues and normal vs tumor types runs in about 2 hours.

We are planning to turn GMQL into an incubated project
within Apache, so as to provide a strong community of
users and developers. We recently deployed our system
in a public network at Cineca28. We also plan to deliver
custom services and to provide access to a large repository
of public data, constructed by integrating and curating data
from ENCODE [21], TCGA [52], 1000 Genomes Project [1]
and other sources.
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