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Abstract—We are developing a new, holistic data manage-
ment system for genomics, which uses cloud-based computing
for querying thousands of heterogeneous genomic datasets. In
our project, it is essential to leverage upon a modern cloud
computing framework, so as to encode our query expressions
into high-level operations provided by the framework.

After releasing our first implementation using Pig and
Hadoop 1, we are currently targeting Spark and Flink, two
emerging frameworks for general-purpose big data analytics.
While Spark appears to have a stronger critical mass, Flink
supports high-level optimization for data management oper-
ations; both systems appear suited to support our domain-
specific data management operations.

In this paper, we focus on a comparison of the two frame-
works at work based upon three typical genomic applications,
stemming from our data management requirements and needs;
we describe the coding of the genomic applications using Flink
and Spark, discuss their common aspects and differences, and
comparatively evaluate the performance and scalability of the
implementations over datasets consisting of billions of genomic
regions.

Keywords-Cloud frameworks for big data management; en-
coding genomic applications using Flink and Spark; compar-
ative performance evaluation of Flink and Spark.

I. INTRODUCTION

Next Generation Sequencing (NGS) is a technology for
reading the DNA that is changing biological research and
will change medical practice; thanks to the availability of
millions of whole genome sequences, genomic data man-
agement may soon become the biggest and most important
“big data” problem of mankind, and bringing genomics to
the cloud is becoming more and more essential [21]. In this
context, we are currently developing a new, holistic approach
to genomic data modelling and querying that uses cloud-
based computing to manage heterogeneous data produced
by NGS technology [15]. Our approach is based on a new,
high-level query language, called GenoMetric Query Lan-
guage (GMQL), which enables building new datasets from
a repository of existing datasets, using algebraic operations.

Data management in genomics applies to three different
phases. Primary analysis is concerned with producing raw
data in the form of short reads of DNA or RNA sequences;
secondary analysis is concerned with extracting the DNA or
RNA sequences from the reads (alignment) or evaluating (or
calling) specific features from aligned files (e.g., mutations
or peaks of expression); this processing is performed by a

large number of bio-informatic tools, some developed by
using Pig [19] or Spark [26]. Data management systems
developed so far concentrate on secondary analysis (e.g.,
[14], [22]); Adam [16], an offset of Spark dedicated to
genomics, is also focused on secondary analysis. GMQL
is concerned with ternary analysis, i.e. querying thousands
of samples of processed data, which are being assembled
by international consortia (such as ENCODE [10], TCGA
[24], and 1000 Genomes Project [1]). The spin-off company
Paradigm4, founded by this year’s Turing award Mike
Stonebraker, also focuses on tertiary analysis, by developing
genomic adds-on to SciDB [2]; they provide access to data
from TCGA and 1000 Genomes Project, but they advocate
the use of specialized databases rather than cloud computing.

In our initial release, available for download1, we trans-
lated GMQL to PIG [5]; we are currently working towards
a new GMQL release, that will be available in 2016, and
will support two parallel implementations, respectively using
Flink [4] and Spark [6], two emerging data frameworks.
Architecture design is driven by strong platform portability
requirements: the two implementations differ only in the
encoding of about twenty GMQL language components,
while the compiler, logical optimizer, and APIs/UIs are
independent from the adoption of either framework.

In this paper, we focus on the comparison of Flink
and Spark at work on genomic queries. We describe the
encoding of three components of our query language; we
discuss the many common aspects and few differences of
their implementations, and evaluate their performance and
scalability. A thorough comparison of Spark and Flink has
recently appeared [20], but without a focus on genomics; it
uses classic algorithms of wordcount, pagerank, K-Means,
and a relational query, which are prototypical applications
for the two frameworks. We instead consider operations
upon genomic regions, such as building a region histogram,
mapping regions to known annotations (e.g., genes), and
joining overlapping regions.

We built a big data benchmark with a large dataset of
regions and samples (the very large configuration consists of
2.5 billion regions scattered over 5 thousand samples.) Indi-
rectly, this paper demonstrates that both Flink and Spark are
capable of managing such huge workload, and therefore they

1http://www.bioinformatics.deib.polimi.it/genomic computing/



qualify as relevant candidates for hosting ternary genomic
data analysis.

The organization of this paper is as follows. Section 2
briefly introduces Flink and Spark; Section 3 explains three
genomic applications; and Section 4 provides their bench-
mark. Conclusions summarize our findings and compare
them to those of [20].

II. PLATFORM FEATURES

Flink and Spark are both motivated by providing high-
level data processing operators and making a more efficient
use of resilient memory as compared with low-level map-
reduce programming. They are both Apache projects; in the
open source data processing landscape they are located at the
same level, together with other data processing engines (like
Storm, Tez, and the standard Hadoop Map-Reduce frame-
work.) All these frameworks rely on lower-level distributed
resource manager (like YARN and HDFS) and they offer
APIs to higher-level applications (like Hive or Pig.) Thus
we can say that they are in part integrated with and in part
alternative to the Hadoop framework. They both can be ex-
ecuted in a variety of ways (standalone, on Hadoop, Mesos)
and/or access several data sources (including Cassandra and
HBase).

A. Flink Foundations

Flink was developed as a cooperative project within Tech-
nical University (TU), Humboldt University (HU) and Asso
Plattner Institute (HPI) [3], [11], [23]. It is now developed
as an open-source Apache project, with more than 125
contributors, with most action concentrated within the Data
Artisans spinoff. Its programming model is based on the
notion of DataSet, that can be constructed from collections
(lists, sets, arrays) or from external sources (files, databases).
DataSets are transformed by operators, which apply to
DataSets and return one DataSet, currently: Map, flatMap,
mapPartition, sortPartition, hashPartition, partitionCustom,
Reduce, Rebalance, Filter, Union, Cross, coGroup, com-
bineGroup, reduceGroup, firstN, project, aggregate, deltaIt-
eration, bulkIteration. Their names clearly recall algebraic
data manipulations, and indeed each operation performs a
high-level transformation upon DataSets. The distinguishing
aspects of Flink are:

• Transparent use of persistent memory management:
Flink starts by operating in memory, and splits data
to disk based on need, with custom object serializer
for Flink operations.

• Use of high-level optimization, based upon equivalence
transformations applicable to job graphs (derived from
program operators). Transformations produce an opti-
mal join graph based on a cost model; as a consequence,
the Flink programmer should not be concerned about
low-level implementation of operators.

• Use of two kinds of iterators within program workflows.
The bulk iterator applies to complete DataSets, the delta
iterator applies to the new items added to a DataSet
during the last iteration. Iteration allows optimizing
flows, in particular to use suitable data formats and
pipelining between two consecutive graph operations,
omitting useless data transformations.

• Use of streaming processes as true streams, by means
of pipelines, which apply to streams and move incom-
ing data to operators as soon as they arrive, thereby
allowing flexible window operations on streams.

Flink is presented as a streaming engine because it is able to
send data from one operation to the next tuple by tuple, with-
out executiong computations on batches as atomic units of
work. This feature is used also in the batch processing, since
batches are considered as a finite sets of streaming data.
Iteration is particularly useful for implementing machine-
learning algorithms [20], like K-Means, where the same
block of instructions that calculates the centroids is executed
many times over the same dataset of points. Iteration is also
used by several join and cross methods.

B. Spark Foundations

Spark was initially developed at Berkeley University as
part of the AMP (Algorithms, Machines, People) 2 and
became an open-source project in 2009; it is now a much
larger Apache project comparatively to Flink, with more than
400 developers from over 50 companies [25], [27], [28];
development of commercial products for deploying Spark-
based solutions is carried over by the Databricks spinoff.

The programming model of Spark is based on an abstrac-
tion called resilient distributed datasets (RDDs); each RDD
holds the data objects in memory, whereas conventional
MapReduce systems read data from stable storage (e.g. the
distributed file system) and write it back to stable storage,
incurring significant cost for loading the data and writing
it back at each stage. Internally, the Spark engine receives
an operator DAG of RDD objects, then the DAG Scheduler
takes care of partitioning them so as to support parallelism,
and the Task Scheduler launches tasks and manages task
failures in a way that is agnostic to the content of tasks:
finally, Workers execute individual tasks. Optimizations of
operations consist in selecting algorithms based on the
partitioning option that minimizes data transfer between
workers.

Spark includes a richer set of operators compared to
Flink, but we find many operations with the same name3,
including Map, flatMap, mapPartition, Reduce, Repartition,
Filter, Union, cartesian, coGroup, SortByKey, CountByKey;
The above operations are also denoted as transformations,

2https://amplab.cs.berkeley.edu/
3Obviously, operations with the same name may show subtle semantic

differences



as they produce RDDs from either RDDs or input files,
whereas other operations are denoted as actions, as they
do not produce RDDs, but instead they either pass a result
set to the embedding program or write data to the disk. The
distinguishing aspects of Spark are:

• Support of declarative, SQL-like queries through the
Spark SQL version, that supports structured queries
over distributed dataset (RDD), with integrated APIs
in Python, Scala, Java and R. The tight integration
allows injecting SQL queries within complex analytic
algorithms.

• Support of a rich set of operations based on key-
value pairs (e.g. sortByKey, reduceByKey, countByKey,
aggregateByKey).

• Support of checkpointing of operations [27] that pro-
vides the ability to rebuild lost data on failure using
lineage: each RDD remembers how it was built from
other datasets and can recompute its values from the
last checkpoint.

It is important to note that Spark lacks of explicit iteration
operators, while it dedicates several operators to key-based
computations, including sorting, counting, grouping and
reducing; this makes Spark particularly suited to implement
classic key-based map-reduce algorithms, such as Word-
Count. In our project, we make little use of key-based and
iterator-based computations; hence the project is ideal for a
fair comparison of the two systems. In the next section, we
show three applications that are programmed in Flink and
Spark by making use of the same (or very similar) operators.

III. GENOMIC APPLICATIONS

Genomic applications discussed in this section share a
common, simple model. Our algorithms deal with DNA
regions, i.e. portions of the genome placed within one
chromosome and further characterized by a start and stop
position. Regions are aligned with respect to a reference
genome (e.g. reference h19 for the human species), there-
fore regions are related to each other by a single sys-
tem of coordinates. We can think of a region as de-
fined by the triple <chromosome,start,stop>, e.g.
<7,145677,678999>, with start<stop, and it is pos-
sible to define operations among them, such as taking two
regions and computing their union, difference, and intersec-
tion; these operations produce a result when two regions
overlap, i.e. if they are both on the same chromosome and
one end of either regions is enclosed within the two ends of
the other region. Every region may have a value describing
the properties of the region, called the region’s features; the
value can be missing, or as simple as a single real number
(e.g., if the region represents a portion of the DNA reacting
to a given treatment using an antibody, the value may be an
indication of the significance of the reaction), or as complex
as the sequence of amino acids which are present in the
region (i.e, a string of the letters A, C, G, T with a length

Figure 1. Histogram problem in genomics: accumulation index computa-
tion.

equal to stop-start; each position - or basis - can also
be associated with an encoded indication of the confidence
of that specific position). Thus, the value of a region can be
complex, and has to be associated with a given signature,
which depends on the type of experiment producing it.

We collect the regions which are produced by each
experimental condition (e.g. a specific cell culture) within
a file or sample; we then collect the samples produced by
the same experiment type (hence with the same signature)
within the same dataset; each sample within a dataset has a
unique identifier. In summary, each region is represented as
a quintuple of values:

Sample = 1837
Chromosome = 1
Start = 15834
Stop = 16135
Values = []

We next present three classical examples of genomic appli-
cations. We present in greater details the first one, which is
simpler and whose logics can be explained step by step.

A. Histogram

A classic operation in genomics is to compute the ac-
cumulation index, i.e. for each position in the genome the
number of regions which overlap with that position; the op-
eration applies to all the samples of a dataset. Programming
this algorithm requires to partition the genome into intervals
such that each interval ranges between the start and stop
positions of the regions and it has a given accumulation
index; see Fig. 1 with three input samples S1, S2, S3;
the output is a sequence of regions on the whole genome
with an associated accumulation index. In this case, the six
input regions of the three samples have several overlaps, and
the accumulation index ranges between 1 and 3.

A sequential algorithm for solving this problem consists
of scanning the genome from left to right and maintain
the accumulation count. Every time we meet the start of
a region, we increment the count by one; conversely, every
time the stop of a region is met, we decrease it. The result
is made of all the consecutive couples of region ends (either
starts or stops) between which the accumulation count is
positive and does not change. In the following, we propose
a parallel and distributed version of this algorithm, which
relies on partitioning the genome into segments of identical
length, called bins. For each chromosome, the i-th bin spans
from i ∗ BIN SIZE to (i + 1) ∗ BIN SIZE . Binning



Figure 2. Operators for encoding the Histogram algorithm in Flink and
Spark.

the genome has been introduced within the UCSC Genome
Browser [13] in order to speed up the search for portions
of the genome that must be loaded within the same browser
window.

This algorithm can be programmed in Spark and Flink
using very similar workflows of operators, hence it is an
excellent benchmark; we start discussing the Flink imple-
mentation, supposing BIN SIZE = 500. Its high-level
operation flow is shown in Fig. 2 on the left.

• Block 1 (Data Source) is responsible for reading the
sample files, parsing them line-by-line, cast each value
according to the desired type, and generate a unique
dataset of regions. We show only three regions from
sample 1 and chromosomes 1 and 2, with the peculiar-
ity that the first region stops where the second region
starts and that the third region intersects with two bins.
id, chromosome, start, stop
1 chr1 154 237
1 chr1 237 450
1 chr2 460 600

• Block 2 (FlatMap) is responsible for the binning. For
each region, it emits a new tuple for each bin it
intersects. The output tuple contains the chromosome,
the bin and a hash-map; in the hash map, we associate
every region start with +1 and every region stop with
-1. In the case a region crosses the border between two
bins, we split it into two contiguous regions; one from
the start to the border and one from the border to the
stop (if the regions spans for more than two bins, the
same procedure is repeated).
chromosome, bin, HashMap[Int,Int]
chr1 0 {154->+1, 237->-1}
chr1 0 {237->+1, 450->-1}

chr2 0 {460->+1, 500->-1}
chr2 1 {500->+1, 600->-1}

• Block 3 (GroupBy) is responsible of grouping the
output dataset of the previous block by chromosome
and bin. Then, on each partition an associative function
is applied by the Reduce, which builds a single tuple
for each chromosome and bin containing a hash-map
with all the starts and stops of the regions in the bin;
notice that in the worst case, the size of this hash-map
is the same as the the length of the bin, therefore it fits
in memory.
chromosome, bin, HashMap[Int,Int]
chr1 0 {154->+1, 237->0, 450->-1}
chr2 0 {460->+1, 500->-1}
chr2 1 {500->+1, 600->-1}

• Block 4 (FlatMap) returns the list of produced regions,
along with their accumulation value, with each region
placed within a bin, thus creating a raw histogram:
chromosome, start, stop, count
chr1 154 450 1
chr2 460 500 1
chr2 500 600 1

• Block 5 (Filter) starts with two filters that separate
the regions properly contained in the bins (left filter)
from the regions overlapping with bins (right filter). The
latter regions must be merged when they are adjacent
and with the same count. This processing requires a
GroupBy and a ReduceGroup. In the specific example,
the right filter is applied to the regions of chromosome
2, producing the region:
chromosome, start, stop, count
chr2 460 600 1

• Finally, Block 6 (Union) performs the union of the
regions separately produced, and Block 7 (DataSink)
writes them to the disk; it generates:
chromosome, start, stop, count
chr1 154 450 1
chr2 460 600 1

The Spark implementation slightly differs from the Flink
implementation because it supports a ReduceByKey opera-
tion at step 3-b that makes the GroupBy operation at step
3-a unnecessary, and executes a FlatMap at step 5-c instead
of a ReduceGroup (compare the left and right sides of Fig.
2.)

B. Mapping to a Reference

We next consider a similar problem to Histogram, which
however compares two different datasets, that are called Ref-
erence and Experiment. Although the problem formulation
is generic, one can think to Reference region as known
annotations (e.g. genes, exons, introns, enhancers) and to
Experiment as regions produced by NGS processing (e.g.
peaks of expressions or mutations). This operation performs



Figure 3. Mapping experiments to references in genomics.

Figure 4. Operators for mapping experiments to references in Flink and
Spark.

the intersection of Experiment samples over the Reference
and then computes an aggregate over such intersection (e.g.,
counts for each reference region how many Experiments
intersect with it). Intuitively, this operation allows one to
observe the Experiment from the Reference point of view,
e.g. counting how many mutations or how many peaks of
expressions occur on given genes.

This behavior is explained in Figure 3, where we show
a simple case consisting of one sample of Reference and
one sample of Experiment, with overlapping regions, where
we count the number of Experiment regions which intersect
with each Reference region (e.g., the second region of
the Reference intersects with 4 regions of Experiment and
therefore its count is 4).

The encoding of this problem as a sequence of operations
for Spark and Flink is shown in Fig. 4. The algorithm
requires to bin the two datasets, to group them by sample
pair, chromosome and binning, to compute intersections
within the bins, to count them, and output the results for
each sample pair. The complexity of this problem grows
quadratically with the sizes of Experiments and References;
in our benchmark, the reference is a single sample.

C. Join of Overlapping Regions

Finally, we compare Spark and Flink on the join of regions
of different samples. We consider three datasets, filter two
of them by simple predicates (e.g. on the region’s SCORE),
join the overlapping regions of the first two datasets and
produce as result the union of those regions; then we join
the resulting regions in the same way with the regions of
a third dataset. Two regions satisfy the join predicate when
they overlap, i.e. when the starting point of one region falls
between the start and end point of the other one. Note
that in most genomic applications joins have complex join
conditions (they are theta-joins) and resulting tuples are
assembled through region-based computations (such as the
union of join operands).

Also in this case we use binning so as to parallelize the
join operations along the genome. The binning procedure
has some inherent difficulty when two joined regions spread
over many bins. In such cases, the resulting region should be
produced only by one of the bins, specifically the first one
where the two regions overlap. This condition generalizes a
binning method presented in [7].

In Flink, it is possible to apply a selection function while
reading the input, and at the same time to assign a region
to all the bins with which it overlaps; the code of the Map
function is:

ds.flatMap {
(r: FlinkRegionTypeReduced,
out: Collector[(Long, String, Long,
Long, Array[Double], Int, Int)]) =>

if (selection.fun(r._5(selection.index)))
{val binStart = (r._3 / BIN_SIZE).toInt
val binEnd = (r._4 / BIN_SIZE).toInt
for (i <- binStart to binEnd) {

out.collect((r._1, r._2, r._3, r._4,
r._5, binStart, i)) }}}

Then, Flink supports only equi-join in the where clause
(equal chromosome, equal bin), but it allows to put more
conditions for theta-join (overlap) as much as construction
of the result (by taking the union of regions) as internal
predicates and constructors which are applied to matching
regions, with a very compact code shown below.

leftDs.join(rightDs).where(1,6)
.equalTo(1,6){

(l, r, out : Collector[(Long, String,
Long, Long, Array[Double])]) => {
if((l._6.equals(l._7) ||

r._6.equals(r._7)) &&
(l._3 < r._4 && r._3 < l._4))
{out.collect((l._1, l._2,

Math.min(l._3, r._3),
Math.max(l._4, r._4),
l._5 ++ r._5)) }}}



Figure 5. Operators for encoding the join algorithm in Flink and Spark

The resulting workflow is quite simple, and consists just
of the cascading of the above operations for each pair of
datasets, as shown in Fig. 5.

Spark supports joining on keys without additional internal
predicates or constructor; therefore, each join of the ap-
plication requires a couple of operations, a simple join on
keys (chromosome and bin) followed by the application of
a FlatMap operator to filter the results and keeping only
overlapping regions, thus producing the output with two
passes on the input rather than one; see Fig. 5. Besides
this aspect, the Flink and Spark implementations are quite
similar.

The Spark engine supports also SQL Spark, a more
declarative and SQL-like dialect of Spark. In SQL Spark,
variables are read to a data frame and can be given a schema;
specifically, after reading the input data and binning, each
dataset is independently defined as a table with the operation
illustrated below:

binRegions(inputDS).toDF("ID","Chr",
"Start","Stop", "Values","binstart",
"bin").registerTempTable("ds")

At this point, SQL Spark supports SQL-like select-project-
join operations, as follows:

val result =
sqlContext.sql("SELECT * " +
"FROM ds1 JOIN ds2 " +
"ON ds1.Chr1 = ds2.Chr2

AND ds1.bin1 = ds2.bin2 " +
"WHERE ds1.Start1 < ds2.Stop2 " +
"AND ds2.Start2 < ds1.Stop1 " +
"AND (ds1.binstart1 = ds1.bin1

OR ds2.binstart2 = ds1.bin1)")

This operation includes the selection and join but does
not include the construction of resulting regions, which is
produced by a FlapMap operation (as before); therefore,
the operator flow of this second encoding is still the one
represented in Fig. 5. In our benchmark, we found no signif-

Figure 6. Stages of histogram computation in Flink.

Figure 7. Stages of histogram computation in Spark.

icant difference in performance between the two encodings,
most likely because are they internally mapped to the same
operators.

IV. BENCHMARK

We performed our experiments on the Amazon Web Ser-
vices (AWS) cloud, using a configuration with m3.2xlarge
machines, each with 8 virtual CPUs, 30GB of memory, and
2 x80 GB of SSD storage. The testing setup contained one
driver node and three configurations of slave nodes, set at 10,
15, and 19 nodes respectively. With 15 slave nodes, we set
the number of executors to 120 giving 120/15 = 8 executors
per node; considering that the OS and Hadoop consume
about 6GB of the node’s memory, each executor had about
3GByte of memory. We used 80 executors in the case of 10
nodes and 152 executors in the case of 19 nodes, so that also
in these cases we had 8 executors per node, with the same
amount of available memory. With this setting, we observed
(by using the Ganglia resource monitor4) that servers were
fully used in terms of their CPU. We used Flink 0.9.0 and
Spark 1.3.1.

A. Histogram execution

We start by comparing how the Flink and Spark engine
manage the blocks of operations discussed in Section III-A.
We observe that:

• Flink groups the blocks within two stages, that are
sequentially executed. In particular, Blocks 1-4 belong
to Stage 1, and Blocks 5-7 belong to Stage 2, as
illustrated in Fig. 6.

• Spark groups the blocks within three stages, that are
sequentially executed. In particular, Blocks 1-3 belong

4http://ganglia.sourceforge.net/



Figure 8. Execution time of the Histogram application in Flink and Spark,
with 15 slave nodes and increasing sizes of input.

to Stage 1, Blocks 4-5 belong to Stage 2, and Blocks
5a-6-7 belong to Stage 3, as illustrated in Fig. 7.

Note that Flink produces less stages, each with more op-
erations; this is in general an advantage, because the end
of stages typically require a synchronization, while inside
stages operations run in parallel, yielding to greater paral-
lelism.

Case Size (GByte) Regions Samples
Small 4.1GB 100,947.792 200

Medium 21GB 509,237,187 1000
Large 43GB 1,034,186,018 2000

Very Large 105GB 2,556,236,090 5000

Table I
FEATURES OF THE DATASETS USED IN THE HISTOGRAM APPLICATION.

Next we discuss the experiments in terms of data sizes.
We used the same experimental data for both the Histogram
and Map application, and we designed four cases, respec-
tively named small, medium, large and very large, whose
dimensions are summarized in Table I. Regions are extracted
from samples of Encode repository [10] but they are then
redistributed to artificial samples so as to guarantee the
availability of enough experimental data. Note that the very
large setting includes 2.5 billions of regions, subdivided
within 5000 datasets.

Engine Small Medium Large Very Large
Flink 78 250 446 1020

Spark (KSer) 101 277 554 1957
Spark (JSer) 122 420 916 3332

Table II
EXECUTION TIMES (IN SECONDS) FOR THE HISTOGRAM APPLICATION.

Execution times of the application in Flink and Spark
with 15 slave nodes are reported in Table II, and graphically
compared in Fig. 8. We note that Flink outperforms Spark,
especially in the very large setting. In Spark, it is possible to
change the data serializer, which can either be adapted to the
data format or be generic. In our benchmark, we used both

Figure 9. Execution time of the Histogram application in Flink and Spark,
medium setting, with increasing nodes.

Figure 10. Stages of Map computation in Flink.

the default Java serializer and the Kryo general serializer5;
performance was best with the latter choice, as shown in
Fig. 8; in the very large setting, Flink outperforms Spark
with Kryo serializer by a factor 2, and the Java serializer by
a factor 3.

We next considered the medium setting and considered
different cluster sizes, ranging from 10 to 196, see Fig.
9. In this setting, the two frameworks have very similar
performance when Spark uses the Kryo serializer.

B. Map execution

We compare how the Flink and Spark engine manage the
blocks of operations discussed in Section 3. We observe
that Flink groups all the blocks within one stage (see Fig.
10), while Spark requires four stages (see Fig. 11). This
is again an advantage for Flink in terms of less need for
synchronization and greater parallelism.

5We will write serializers specifically suited to genomic data formats,
but the general benchmark is best served by generic serializers.

6Our AWS configuration, covered by a grant, is limited to 20 nodes.

Figure 11. Stages of Map computation in Spark.



Engine Small Medium Large Very Large
Flink 53 178 281 652

Spark (KSer) 136 377 935 2154
Spark (JSer) 175 583 1049 2710

Table III
EXECUTION TIMES (IN SECONDS) FOR THE MAP APPLICATION.

Figure 12. Execution time of the Map application in Flink and Spark,
with 15 slave nodes and increasing sizes of input.

For what concerns the reference file, we used the RefSeq
genes, which amounts to 30,692 unique regions. Mapping
thousands of experiments to the set of known genes is a
biologically relevant query, allowing to quantitatively com-
pare the genes in terms of their overall overlap with available
peaks of expression. Execution times of the application in
Flink and Spark are reported in Table III, and graphically
compared in Fig. 12. In this application Flink outperforms
Spark, showing execution times that are three to four times
faster in all settings; Kryo serialization slightly outperforms
the Java serialization.

We next considered the medium setting and considered
again different cluster sizes, ranging from 10 to 19, see Fig.
13. Note that the difference in performances further increases
with 10 nodes.

C. Join execution

We finally consider the Join application of Section III-C;
we observe that Flink groups all the blocks within one stage
(see Fig. 14), while Spark requires four stages, with stages

Figure 13. Execution time of the map application in Flink and Spark,
medium setting, with increasing nodes.

Figure 14. Stages of join computation in Flink.

Figure 15. Stages of join computation in Spark.

1 and 3 dedicated to loading data from the sources, stages
2 and 4 dedicated to joins, and with stage 3 in parallel with
the sequence of stages 1 and 2 (see Fig. 15).

Case Size (GByte) Regions Samples
Small 1x3 39,424,000x3 1x3

Medium 2.5x3 98,560,000x3 1x3
Large 5x3 197,120,000x3 1x3

Table IV
FEATURES OF THE DATASETS USED IN THE JOIN APPLICATION.

For what concerns data sizes, we designed three cases,
respectively named small, medium, and large, whose di-
mensions are summarized in Table IV; we generated three
tables with very close numbers of regions. Regions have an
attribute SCORE, used for the selection condition.

Engine Small Medium Large
Flink 81 361 867
Spark 80 115 204

Table V
EXECUTION TIMES (IN SECONDS) FOR THE JOIN APPLICATION.

Execution times of the application in Flink and Spark
with 15 slave nodes are reported in Table V, and graphically
compared in Fig. 16; we used the Kryo serialization. In this
application, Spark is faster than Flink, especially with the
large setting (where it is 4 times faster). The better perfor-
mances of Spark over Flink are confirmed by considering
also the diagram showing how execution time decreases with
increasing number of the nodes, fixing the input data to the
medium case (see Fig. 17).



Figure 16. Execution time of the Join application in Flink and Spark, with
15 slave nodes and increasing sizes of input.

Figure 17. Execution time of the Join application in Flink and Spark,
medium setting, with increasing nodes.

V. CONCLUSIONS

The result of the benchmark indicates that Flink was supe-
rior in performance in the Histogram and Map applications,
featuring faster execution by a factor between 2 and 3 in
the very large setting. We believe that this result is due to
a better concurrent execution, that results in less sequential
stages, and to a very efficient pipelining: more operators are
chained within each stage, and data flows tuple by tuple

Figure 18. Rate of output tuples per second, Histogram implementation.

Figure 19. Rate of output tuples per second, Map implementation.

Figure 20. Rate of output tuples per second, Join implementation.

from one operator to the next, thanks to the Flink core that
is optimized for streaming operation. Spark requires more
stages, with extra data shuffling between them; pipelining
is done block by block and not tuple by tuple. Figures 18
and 19 show the rate of result tuples produced per unit time
and they show that such rate is constantly increasing for
Flink and is instead decreasing with Spark, suggesting a
reduction of efficiency possibly due to heavier pipelining
with the growth of the data size.

We instead found that in the genomic Join application
Spark outperformed Flink. This result was not expected
after reading [20], where Flink was found superior than
Spark on an equi-join query of two tables, but our result
was confirmed also with changes to the execution contexts
and datasets; the two systems have identical performance
on the small setting, but Spark is faster by a factor 4 on
the large setting. In genomics we expect queries to grow in
the number of regions or of joined samples, but we do not
expect queries with a large number of joins, hence our Join
application benchmark is appropriate. Note also that Spark
produces result tuples at a faster rate with increasing data
sizes, whereas Flink rate reduces with size, as illustrated in
Fig. 20.

We also note that with Spark it is possible to change
the data serializer, while Flink does not support this option.
Spark developers suggest using Kryo serializer that is faster
and consuming less memory than the default Java serializer;
this was confirmed in our tests, as shown in Fig. 8 and 12.

We complement our benchmark with a discussion of
the other results presented in [20]. In that work, authors
do not mention the version of Flink and Spark that was
used for experiments. Spark was found superior on the
WordCount application, which is essentially a simple, batch
map/reduce sequence over a very large text body. Flink
was instead found more efficient than Spark on graph
processing algorithms (k-means clustering and pagerank),
which both require a variable number of iterations prior
to convergence. The discussion on the influence of such
number of iterations was not conclusive, because the gap
between the two systems as a function of the number of
iterations was increasing in pagerank and decreasing in k-
means clustering.

There are many aspects in which Flink shows to be at an



earlier stage of its development. Flink versions change quite
often and its documentation is at times incomplete, whereas
Spark documentation appears well organized, with clear
indications of how to embed Spark within Scala, Java, R, and
Python. Currently Spark appears superior in terms of market
penetration and partners credibility; the public interest on
Spark on Internet is at much higher levels than the interest
on Flink, as visually very clear by inspecting Google trends7.
Thus, we believe that this performance-centred benchmark
covers just one aspect of the confrontation among these
two frameworks, and it is not the final word. Indeed, as
the first benchmark between the two frameworks became
available on June 25, 2015 [20], we expect more works
of this kind to become available soon, and we also expect
that the benchmarks will stimulate internal development,
yielding to important performance improvements for both
frameworks.

Our project’s architectural choice, which includes a
portable GMQL implementation to both Flink and Spark,
appears even more strongly motivated after this benchmark;
we believe that in the long run it will be a key feature of
our genomic data management project.
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