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a b s t r a c t 

Next-Generation Sequencing (NGS), also known as high-throughput sequencing, has 

opened the possibility of a comprehensive characterization of the genomic and epigenomic 

landscapes, giving answers to fundamental questions for biological and clinical research, 

e.g., how DNA-protein interactions and chromatin structure affect gene activity, how can- 

cer develops, how much complex diseases such as diabetes or cancer depend on personal 

(epi)genomic traits, opening the road to personalized and precision medicine. 

In this context, our research has focused on sense-making , e.g., discovering how hetero- 

geneous DNA regions concur to determine particular biological processes or phenotypes. 

Towards such discovery, characteristic operations to be performed on region data regard 

identifying co-occurrences of regions, from different biological tests and/or of distinct se- 

mantic types, possibly within a certain distance from each others and/or from DNA regions 

with known structural or functional properties. 

In this paper, we present Di3, a 1D Interval Inverted Index, acting as a multi-resolution 

single-dimension data structure for interval-based data queries. Di3 is defined at data ac- 

cess layer, independent from data layer, business logic layer, and presentation layer; this 

design makes Di3 adaptable to any underlying persistence technology based on key-value 

pairs, spanning from classical B+ tree to LevelDB and Apache HBase, and makes Di3 suit- 

able for different business logic and presentation layer scenarios. 

We demonstrate the effectiveness of Di3 as a general purpose genomic region ma- 

nipulation tool, with a console-level interface, and as a software component used within 

MuSERA, a tool for comparative analysis of region data replicates from NGS ChIP-seq and 

DNase-seq tests. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Next-Generation Sequencing (NGS) is a family of technologies for precisely, quickly and cheaply reading the DNA or

RNA of biological samples [49,50] , producing huge amounts of data. Large-scale sequencing projects are spreading and

very numerous genomic features, produced by processing NGS raw data, are collected by research centers, often organized

through world-wide consortia, e.g., ENCODE [17] , TCGA [58] , 10 0 0 Genomes Project [1] , Roadmap Epigenomics [47] , and

others. 

The availability of NGS data has opened the possibility of a comprehensive characterization of genomic and epigenomic

landscapes. Answers to fundamental questions for biological and clinical research are hidden in these data, e.g., how DNA-

protein interactions and chromatin structure affect gene activity, how cancer develops, how much complex diseases such as
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Fig. 1. Di3 application focus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diabetes or cancer depend on personal (epi)genomic traits. Personalized and precision medicine based on genomic informa-

tion is becoming a reality; the potential for data querying, analysis and sharing may be considered as the biggest and most

compelling big data problem of mankind. 

NGS technologies [9,48] allow collecting genome-wide genomic and epigenomic features, including DNA mutations or 

variations (DNA-seq), transcriptome profiles (RNA-seq), DNA methylations (BS-seq), DNA-protein interactions and chromatin 

characterizations (ChIP-seq and DNase-seq) [12,42] . The processing of raw data (i.e., NGS reads) produced by these technolo-

gies returns lists of regions of cellular DNA, characterized by some common properties; such regions, often referred as peaks

(of NGS reads), are defined through their linear genomic coordinates and they are usually associated with several attribute

values, including a statistical significance score, i.e., a p -value [44,62] . 

Fig. 1 summarizes the various kinds of data which are produced by NGS technologies. Data analysis is partitioned into

three phases; primary analysis focuses on the production of sequence reads; secondary analysis focuses on alignment of raw

data (short reads) to reference genomes and on feature calling. Tertiary analysis is responsible of sense-making, e.g., discov-

ering how heterogeneous features/regions synergically concur to determine particular biological processes or phenotypes. 

Fig. 1 shows that the various analysis phases apply to genomics, epigenomics and transgenomics, and also shows the most

relevant types of data representations used at each phase. 

Our main research focus is on tertiary analysis; we recently proposed a new holistic approach to genomic data modeling

and querying 1 that takes advantage of cloud-based computing to manage heterogeneous data produced by NGS technologies.

In [37] , we introduced the novel GenoMetric Query Language (GMQL), built on an abstract model for genomic data; we

sketched out its main operations and demonstrated its usefulness, expressive power and flexibility through multiple different

examples of biological interest (including finding ChIP-seq peaks in promoter regions, finding distal bindings in transcription

regulatory regions, associating transcriptomics and epigenomics, and finding somatic mutations in exons). 

We also developed methods for secondary data analysis, with a focus on data integration. Indeed, NGS experimental

protocols recommend the production of at least two replicates for each sequenced sample, in order to reduce the number

of false-positive calls and “rescue” (i.e., call) regions with low significance score which would probably be discarded in a

single sample evaluation, but that are supported by a sufficiently strong evidence when combined across multiple replicate

samples. To perform such task, and assess the reproducibility in high-throughput experiments, we recently proposed a novel
1 http://www.bioinformatics.deib.polimi.it/genomic _ computing/ 
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Fig. 2. Two applications’ design of Di3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method [27] , named Multiple Sample Peak Calling (MSPC), 2 which has been then implemented in MuSERA [28] , 3 an efficient

tool for locally combining evidence on replicates and for interactive graphical evaluations of results in the genomic context

(see Fig. 1 for MSPC and MuSERA application focus). 

1.1. Our contribution 

Both GMQL and MuSERA are grounded on the efficient execution of operations for the composition and comparison of

(epi)genomic regions, and their associated attributes. Region-based operations to be performed towards these goals include

the identification of co-occurrences or accumulations of regions, possibly from different biological tests and/or of distinct

semantic types, within the same area of the DNA, sometimes within a certain distance from each others and/or from DNA

regions with known structural or functional properties (e.g., describing particular DNA sequence motifs, genes involved in

certain biochemical pathways, or regulatory regions of gene transcription activity). Nowadays, such complex operations are

only partially supported by existing tools, e.g., BEDTools [43] , BEDOPS [40] , and GROK [41] ; these tools typically support

only algebraic operations based on the genomic coordinates of the regions within a single data sample or a pair of samples

at the time, requiring the use of scripts to perform complex operations on multiple data samples. 

To cope efficiently with complex region calculus, we have developed the 1D Interval Inverted Index (Di3), a multi-

resolution single-dimension indexing framework (see Fig. 1 ). Di3 is defined at the data access layer, and it is independent

from data layer, business logic layer, and presentation layer (see Fig. 2 ). This design decision has two significant advan-

tages; firstly, being independent from the data layer, Di3 is adaptable to any key-value pair persistence technology. These

may range from Apache Cassandra, LevelDB, Kyoto Cabinet, and Berkeley DB for persisted large scale data (NoSQL databases

are surveyed in [26] and [56] ), to simple in-memory key-value collections implemented by most of modern programming

languages (e.g., “Dictionary” in C# and “map” in C++). 4 Secondly, Di3 design can support different business logic and pre-

sentation layer scenarios, which are complemented by user-defined functions (UDF) provided via behavioral design patterns

such as strategy pattern [57] . To best of our knowledge, Di3 is the first comprehensive indexing framework for interval-based

NGS data. 

In this paper, we describe two contexts of Di3 application: 

• General-purpose, self-contained use of Di3 from the Di3 Bioinformatics (Di3B) command-line interface (Di3BCLI) that

provides console-level accessibility to Di3B operations (see Fig. 2 ). This is also used for performance evaluation. 

• Use of Di3 as a component within the MuSERA tool [28] , showing how Di3 adapts to the general requirements of sec-

ondary and tertiary data analysis (see Fig. 2 ). 

1.2. Outline 

This paper is organized as follows. Section 2 presents the state of the art. Section 3 is dedicated to the Di3 method,

further sub-structured in its model, data structure, and supported operations. Section 4 reports experiments which assess

the effectiveness of Di3 with big data sets and compare to BEDOPS and BEDTools, which are currently used in the state of

the art for region-based operations. In Section 5, we demonstrate how Di3 is used within MuSERA, a recently developed

tool for multiple sample peak calling. 

2. Related work 

The sequence data, mainly produced by the pipelines of primary and secondary analysis, are relatively well-studied; ef-

ficient algorithms and techniques for inference and querying on such data are developed. Some examples are iBLAST [13] ,
2 http://www.bioinformatics.deib.polimi.it/MSPC/ 
3 http://www.bioinformatics.deib.polimi.it/MuSERA/ 
4 In this manuscript, we use an implementation of Di3 which relies on classical B+ tree and runs both in-memory and persistent. 
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and an indexed version of BLAST [4] , or a vectorization-based method [59] , which benefits SIMD (single instruction, multiple

data) operations that are widely used features of modern CPUs, or [31] and [39] , all with the objective of improving perfor-

mance and accuracy of sequencing matching. However, genomics interval-based data, mainly produced by the pipelines of

secondary and tertiary analysis, has recently drawn attention. In general, the cornerstone of interval-based data manipula-

tion in genomics is interval intersection; ‘given a query interval, find all reference intervals that overlap it’ [7,22] . Interval

intersection is fundamental for retrieval on annotation data and integration of diverse biological information using a ref-

erence genome [3] . Queries to retrieve features overlapping specific regions are frequently used when examining genomic

features (e.g., on a genome browser). Such queries might be executed by linearly scanning of entire file, that might be rea-

sonable for few retrievals. However, reading the entire file is an inefficient strategy in long run. A trivial solution would

be adopting database systems [30,54] ; however, the limited functionality and poor performance practices [3] of generic

database system, in addition to the complexity of setting up and designing schemas of the database for an average end

user, discourage adoption of such systems. Therefore, a wide range of research is focused on efficient algorithms for interval

intersection, and many applications implement it. In general, interval intersection algorithms are of three types, described

as follows. 

i. Tree-based, e.g., BITS [34] (binary tree), and Segtor [45] (segment tree). Previous work for Di3 can be traced to clas-

sical search trees, such as interval-tree [14] , segment-tree [5] , range-tree [6] , or Fenwick tree [18] ; these are optimal

solutions, each for particular interval-based retrieval, and some are used in common bioinformatics tools as underlying

data structure. For instance, UCSC Genome Browser, BEDTools, and SAMTOOLS [36] use R-trees [25] ; so that intervals of

a sample are partitioned into hierarchical ‘bins’, and query intervals are compared with ‘bins’ to narrow the search for

interval intersection to a focused portion of the genome. The algorithm is inefficient, as it necessitates a linear-sweep

on all the intervals in each candidate bin for those overlapping the reference. Additionally, such algorithms are poor

candidates for parallelism, because non-uniformly distributed intervals (which are common for ChIP-seq, RNA-seq, and 

exome sequencing) unbalance bin loads; consequently, some bins take considerably longer time to be processed than

others. Additionally, individually such data structures do not provide a comprehensive solution for tertiary analysis chal-

lenges. For instance, retrieval queries such as ‘find all the intervals (i.e., regions) intersecting with a given interval’ can

be determined in O (log 2 n ), with n the number of searched intervals, using interval-tree; while queries such as ‘find the

n -th closest interval’ require re-mastering the very same data structure, which becomes inefficient. Moreover, some of

such data structures are mainly designed as in-memory data structures; and when made persisted, they cause a severe

overhead in terms of Input/Output operations. 

ii. Plane-sweep-based on pre-sorted samples, e.g., FJoint [46] which concurrently scans pre-sorted query sample and refer- 

ence intervals to find overlaps. Some tools use plane-sweep-based algorithms on pre-sorted samples; for instance, recent

versions of BEDTools and BEDOPS use plane-sweep as complement to tree data structure. Theoretically, plane-sweep-

based algorithms are optimal; except for parallelization considering ‘sweep invariant’ challenge [38] : ‘given a sweep line

and its associated split, all intersections and event points are known between the sweep line and the beginning of the

split’. Plane-sweep algorithms are parallelized by partitioning the input statically or dynamically, such that each partition

can be swept without violating ‘sweep invariant’ [38] . However, parallelization degree of this method is limited to the

number of partitions, and execution load of partitions is prone to non-uniformly distributed data. 

ii. Index-based, e.g., NC-lists [3] . Efficient retrieval requires a dedicated data structure, such as an indexed flat file; for

instance BAM [36] , or Tabix [35] that adapts BAM indexing techniques for generic tab-delimited files, convert a file of se-

quential access to its equivalent random access file. Such data structures are commonly built during preprocessing steps,

and are persisted for further references. Building such data structures may take a considerably long time; however, as the

processing time is significantly reduced, the pre-processing and processing balance is encouraging. The observation led

to the conception of BAM format. A common method is Nested Containment lists (NC-lists) [3] ; an extension to NC-lists

is [63] ) which is mainly designed for: ‘given a query interval, find all reference intervals that overlap it’. Commonly, algo-

rithms and tools available in the bioinformatics community are for pairwise intersection of genomic intervals. Extension

to beyond pairwise is commonly provided by custom scripts and algorithms, but they suffer scalability and orthogonality,

which makes it difficult to perform a comparative analysis on a collection of homogeneous samples. Identifying inter-

secting intervals of multiple samples is an important aspect to study a variety of biological characteristics. To address

the challenge, a ‘slice-then-sweep’ algorithm [33] for N-Way interval intersection was developed. 

Temporal databases and spatial data structures provide solutions for interval manipulation, from efficient storage and re-

trieval to manifold operations on top of that. Generally, in the temporal databases the challenge is formalized as object/tuple

versioning, e.g., [51,55] , a big data spatio-temporal storage applied to geographical informations; in such methods, objects

have different versions at various timespans, and can be valid or invalid at a given period, see also [16] . Other works have

shown temporal indexing schemas which handle the different notions of time, as well as non-temporal attributes, by us-

ing classical B+ tree [23] or by exploiting the built-in functionalities of relational database systems [53] . Such systems hold

the concept of time; hence, they render past ( history ), now , and future . Consequently, the storage technology is commonly

’append-only’, and removing an object is generally defined as invalidating the object at a given timespan. Additionally, tem-

poral operations commonly target recent events; hence, events prior to a certain time point are usually archived to reduce

the amount of information to be processed for regular queries. 
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A common prerequisite in temporal database design is that the update, insertion, and deletion operations target now and

the history is intact (e.g., John’s paid salary at last year does not change); however, few works exist concerning bi-temporal

data, where updating past is possible through an additional dimension [29] . Compared to temporal databases, genomic

databases have a fundamental difference: they do not hold any synonym for temporal model concerning past , now , and

future concepts, as all events on the genomics domain are of equal importance from the location perspective; manipulation

functions can target any position on the genome, and thus storage, indexing, and operations should be targeted at this aim.

Similarly to what we propose here, several works have proposed the embedding of region query processing functions

within libraries that can be integrated within programs [10,41] . In particular, GROK [41] presents a rather elegant math-

ematical formalism based on set algebra; its authors propose a genomic region abstraction (that may represents reads,

genomic variants, mutations, and so on), and then define a set of region operations, delivered as the Genomic Region Op-

eration Kit (GROK) library. In comparison, GROK supports lower-level abstractions than Di3 and some low-level operations

(e.g., flipping regions) that Di3 does not directly support, but they must be embedded into C++ programming language code.

Furthermore, high-level declarative operations, such as COVER and MAP (see Section 3.1 ), can be encoded in GROK, but they

must be invoked from line editors or C++ programs. 

BEDTools [43] and BEDOPS [40] are customarily used by biologists for processing region data in BED format; they can be

used from within software environments for bioinformatics (e.g., BioPerl , BioPython , R or Bioconductor ), and support algebraic

operations based on the genomic coordinates of regions, but only within a single or a pair of data samples at the time,

requiring the use of scripts to evaluate multiple data samples. A thorough comparison of Di3 with BEDTools and BEDOPS is

presented in Section 4 . 

Alternative approaches exist to efficiently process intervals in the Apache Hadoop ecosystem [8,15] by implementing

algorithms which partition the operands in order to speed up their evaluation. In [11] the authors propose an algorithm

based on data binning; recently, Afrati et al. [2] further analyze binning-based algorithms in order to assess their compu-

tation bounds. For Apache Spark [61] , similar problems have been addressed by projects such as GeoSpark [52,60] . Besides

cloud-based systems, scientific databases can also be used to support genomic computing, including Vertica 5 (used by the

Broad Institute and NY Genome Center), and SciDB 6 (further enhanced by Paradigm4 7 , a company whose products include

genomics adds-on to SciDB and access to NGS data from TCGA and 10 0 0 Genomes Project). 

Several organizations are considering genomics at a global level. For instance, Global Alliance for Genomics and Health

(GA4GH) 8 is a large consortium of over 200 research institutions with the goal of supporting voluntary and secure sharing

of genomic and clinical data; their work on data interoperability is producing a conversion technology for the sharing of

data on DNA sequences and genomic variations [20] . Also Google recently provided an API to store, process, explore, and

share DNA sequence reads, alignments and variant calls, using Google’s cloud infrastructure. 9 

3. Di3 design 

Di3 is a general-purpose indexing framework which provides fast access to intervals; therefore, it applies to several

domains, including genomics (any genomic region is a linear interval defined by the genomic coordinates of the region

ends). Di3 main strengths are its ability to adapt to domain needs, thanks to the native support for user-defined functions

(UDFs), and its portability to several implementation technologies, thanks to its high-level, layered design that abstracts

from implementation details. 

Di3 models homogeneous and heterogeneous intervals on a domain; related events are collected in sets, which collec-

tively constitute a sample . For instance, a genomic data sample may contain regions (i.e., intervals) of DNA-protein interac-

tions occurring on a genome under an experimental setup; each interval can be associated with values, e.g., a significance

score. 

In general, let S = { S 1 , . . . S j , . . . S J } denote the available samples, where each sample is a set of intervals S j =
{ I j 

1 
, . . . I 

j 
i 
, . . . I 

j 
| S j | } ; each interval I = [ I , ̄I ) is included within its lower (left) and upper (right) bounds (ends). Di3 organizes

intervals by means of snapshots (see Fig. 3 ); each snapshot corresponds to a point on the domain, and is associated with all

the intervals overlapping that point. More precisely, each snapshot B b is a key-value pair element, where the key ( e b ) is the

coordinate of the snapshot on the domain, and the value ( λb ) is a set of pointers to descriptive metadata of all the intervals

overlapping the coordinate e b . 

3.1. Di3 operations 

Fig. 4 summarizes the design of Di3 from a high-level perspective. It starts from the presentation and business logics

of the two applications that are discussed in this paper, then it enumerates Di3 abstract uses at a semantic level, then
5 https://www.vertica.com/ 
6 http://www.scidb.org/ 
7 http://www.paradigm4.com/ 
8 http://genomicsandhealth.org/ 
9 https://cloud.google.com/genomics/ 
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Fig. 3. Di3 data structure constructed for four input regions. 

Fig. 4. The layers of Di3 and supported abstractions and operations at each level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shows the supported logical operations that make such abstractions possible, and then shows that the physical operations

are matched to a layer providing the persistence technology. Next, each Di3 layer is discussed (bottom-up.) 

The physical level functions bridge the Di3 data model to the data layer, using some key-value pair persistence technol-

ogy. Operations at the physical layer include Create , Read , Update , Deleted (CRUD), and Enumerate . These operations create

and manipulate the snapshots and organize them in a key-value pair persistence technology, by translating input intervals

to snapshots and retrieving intervals from snapshots. They are internal to Di3 and accordingly do not incorporate UDFs. 

Logical level functions leverage on physical level operations, and provide the essential elements for region calculus. These

functions cover classical region calculus that benefits from the information of a single snapshot, e.g., ’given a point on the

domain, find intervals overlapping with it’ (similar to queries on segment-tree), or that leverages on information provided

by a set of consecutive snapshots, e.g., ’given an interval, find all intervals overlapping with it’ (similar to queries on interval-

tree). Logical level functions leverage on snapshots to optimally retrieve co-occurrences of intervals, or co-occurrence his-

tograms and distributions; some of them define the Di3 public application programming interface (API), whereas other

functions can be user-defined. 

Upon physical level operations and logical level functions, Di3 builds semantic level functions. The goal of these functions

is to facilitate both high-level reasoning on data that include coordinate-attribute criteria, and UDFs creation for extensibility

to application requirements. These functions are: similarity search , which finds samples that best match the criteria defined

in a query; co-occurrence patterns , which searches for density-based co-occurrence patterns; dependency detection , which
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Fig. 5. An example of COVER function with minAcc = 2 and maxAcc = 4 on 5 samples. 

Algorithm 1 Cover algorithm. 

1: procedure Cover ( minAcc , maxAcc , UDF ) 

2: determined_intervals ← ∅ 
3: accumulation ← 0 

4: B marked ← null 

5: for each snapshot B in first resolution of Di3 do 

6: accumulation ← accumulation at B 

7: if minAcc ≤ accumulation ≤ maxAcc then 

8: B marked ← B 

9: determined_intervals ← determined_intervals ∪ intervals of B 

10: else 

11: if B makred � = null AND (accumulation > maxAcc OR accumulation < minAcc ) then 

12: determined_intervals ← determined_intervals ∪ intervals of B 

13: UDF ( B makred , B , determined_intervals) 

14: B marked ← null 

15: determined_intervals ← ∅ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determines the positions on the domain where query regions co-occur; and deviation detection , which finds positions on the

domain where the regions of a given set do not commonly co-occur, based on the information stored in the Di3 model. 

In this paper we focus on the logical layer, being this the de-facto Di3 API, whereas the physical layer operations are

strictly related to the specific persistence technology used for the Di3 application scenario, and the semantic layer functions

are application dependent (some of them are used by MuSERA and are described in Section 5 ). Concerning the logical layer,

we have the following operations natively supported by Di3: 

Cover. The COVER function applies to snapshots and computes a single sample from intervals constituting the snapshots,

by taking into account interval intersections and a UDF. Each resulting interval I is the contiguous intersection of at least

minAcc (minimum accumulation) and at most maxAcc (maximum accumulation) of intervals. See Fig. 5 as an example of

the COVER function, and Algorithm 1 for COVER pseudocode. For each resulting interval I , the COVER function determines

contributing intervals, which then are passed to the UDF for further evaluation. A UDF may assign to a resulting region I any

user-defined value type, spanning from ’list of all contributing intervals’ or ’cardinality of contributing intervals’, to analytical

evaluations such as ’custom aggregation of significance values’. In COVER , the use of UDFs is thus supported, being count
the default aggregation function. 

Summit. The SUMMIT function is a variation of the COVER function; similarly it takes minAcc , maxAcc and a UDF, and

reports the local intersections of COVER . In other words, SUMMIT returns regions that start from a position where the num-

ber of intersecting regions is between minAcc and maxAcc and does not increase afterwards, and stop at a position where

either the number of intersecting regions decreases, or it violates the maxAcc parameter (see Fig. 6 ). Similar to COVER ,
SUMMIT determines contributing intervals and passes them to the UDF, which can aggregate any property of intervals and

return any user-defined aggregated value type. 
Please cite this article as: V. Jalili et al., Indexing Next-Generation Sequencing data, Information Sciences (2016), 

http://dx.doi.org/10.1016/j.ins.2016.08.085 

http://dx.doi.org/10.1016/j.ins.2016.08.085


8 V. Jalili et al. / Information Sciences 0 0 0 (2016) 1–20 

ARTICLE IN PRESS 

JID: INS [m3Gsc; September 1, 2016;20:57 ] 

Fig. 6. An example of SUMMIT function with minAcc = 2 and maxAcc = 4 on 5 samples. 

Fig. 7. An example of Accumulation Histogram function on 5 samples. 

Algorithm 2 Map algorithm. 

1: procedure Map ( I reference , UDF ) 

2: determined_intervals ← ∅ 
3: for each snapshot B in first resolution of Di3 between I reference and Ī reference do 

4: determined_intervals ← determined_intervals ∪ intervals of B 

5: UDF (determined_intervals) 

6: determined_intervals ← ∅ 

 

 

 

 

 

 

 

Accumulation histogram/distribution. The functions Accumulation histogram and Accumulation distribution 
compute the genome-wide accumulation of intervals, and respectively report a histogram or distribution of the calculated

information (see Fig. 7 ). 

Nearest neighbor. Given a reference interval I , the Nearest neighbor function determines the nearest neighbor

indexed interval, that is either an overlapping interval, or the closest up-stream or down-stream non-overlapping

interval. 

Map. Given a reference interval I , the MAP function determines all the intervals indexed in Di3 that overlap with I (similar

to classical interval-tree operation). In addition to a reference, the function takes a UDF and passes the determined intervals

to the UDF (see Fig. 8 as an example of the MAP function, and Algorithm 2 for MAP pseudocode). The output of the UDF

is then reported back as an attribute of I . For instance, a UDF may take all the intervals overlapping I and return their

cardinality. 
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Fig. 8. An example of MAP function on 5 samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Di3 internals 

The design of Di3 is motivated by giving the best possible support to logic operations; in particular, Di3 supports MAP
and Nearest neighbor operations in logarithmic time in the number of regions, while it supports COVER , SUMMIT and

Accumulation histogram operations in linear time (indeed, second resolution indexing supports sub-linear time

search, as it is later explained). These aspects motivate the superior performance of Di3 over the state-of-the-art, as dis-

cussed in Section 4.2 . 

Di3 adopts a single-dimension paradigm, and targets the interval’s coordinates; however, it also adopts a double-resolution

paradigm. The first resolution organizes intervals based on their coordinates through snapshots and provides logarithmic ac-

cess on the coordinates; the second resolution builds groups of snapshots based on their coordinates and computes suit-

able aggregation functions for each group, using all the attributes (and not just the coordinates). These groups act as

secondary key for improved access based on specific attributes. In the following sections we describe each resolution in

details. 

3.2.1. First resolution 

Snapshots summarize information about the coordinates where a variation occurs in intervals, i.e., when an interval starts

or ends; a snapshot at e b exists iff at least one interval introduced such variation. Hence, a finite set of snapshots can be

used to index a finite set of intervals on both discrete and contiguous domains. Note that multiple intervals with the same

starts or ends are possible. 

Each snapshot holds a list of the IDs of all the intervals overlapping with its position; having a pointer to each interval

overlapping a point on the domain is advantageous mainly for queries that target specific or relative positions. For instance,

’given an interval, find all intervals overlapping with it’ requires O (log 2 n ) to find the snapshot which has a pointer to all

intersecting intervals; or ’given an interval, find all its neighbors at 200 base-pair (unit of the genomic domain) distance’

requires O (log 2 n ) to find the snapshot at overlapping position, plus few additional siblings of the determined snapshot, and

then to union the intervals represented by the snapshots (which asymptotically is still O (log 2 n )). 
10 

This organization has been shown already in Fig. 3 ; the upper part of the figure describes 4 input intervals; the lower

part of the figure describes the Di3 index, where each snapshot B b includes a key-value pair, the key is e b , and the value is

the list of intervals which have an intersection with B b . Precisely, B b can be at the left (L), at the right (R), or in the middle

(M) of an interval; the type of positioning (i.e., L, R or M) is included in each entry of the interval list, which also contains

a pointer to descriptive metadata for the interval. For instance, the third snapshot, B 3 , intersects with three intervals, being

in the middle of the S 1 and S 2 intervals and at the left of the S 3 interval. 

The first resolution index is created using batch indexing , a method which includes input intervals one after the other;

such method is preferred over bulk indexing or range indexing , which require the sorting of intervals prior to index creation.

These methods are related to the physical layer being implemented through a B+ tree and they are related to classical

methods for B+ tree data insertion [24] , [21] . To perform batch indexing, we contrasted two methods, respectively called

single-pass indexing and double-pass indexing . The former one considers each interval in input and precisely updates the data

structure in a single-pass; the latter one at the first pass orders the snapshots of new intervals with respect to all existing

intervals, and at the second-pass updates all the snapshots with the information about the list of the intersecting intervals.

Fig. 9 explains step-by-step the single-pass indexing of the four intervals of Fig. 3 . 
10 Computational complexities are based on a B+ tree data structure for the implementation of the physical layer operations. 
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Fig. 9. Step-by step construction of the Di3 index status represented in Fig. 3 , as result of inserting four regions. 

Fig. 10. A comparison between single-pass and double-pass indexing in two scenarios: insertion of (A) large number vs. (B) small number of new intervals. 

 

 

 

 

 

 

 

 

 

The two methods are compared in Fig. 10 , which clearly shows that no method dominates over the other one. In general,

single-pass indexing is superior with a small number of new intervals, while double-pass indexing is superior for a large

number of new intervals. Based on such analysis, the initial indexing of intervals in Di3 is performed by using the double-

pass method, while updating the index is performed by single-pass procedure. 

3.2.2. Second resolution 

The second resolution is built from the first resolution by grouping a set of snapshots and aggregating the relative in-

formation. The elements of the second resolution of Di3 are collections of consecutive snapshots grouped together, called

blocks . Each block is defined as a key-value pair; the key is defined by a grouping function, while the value is defined by an

aggregation function. More precisely: 

In Grouping , a user-defined function groups a set of adjacent snapshots; depending on the semantic of the UDF, such

groups reveal various aspects. For instance, in the genomic domain with intervals representing a biological activity, a group

of snapshots is a region on a genome where at least one biological activity is observed. The grouping function defines the
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Table 1 

Di3BCLI commands. 

Command Description 

Index Takes the name of a file and indexes all its regions. 

BatchIndex Takes the names of a set of files specified using wildcard characters. 

2Pass Runs second-pass of indexing in double-pass indexing mode. 

2RI Indexes second resolution. 

Cover Executes COVER function and exports results. 

Summit Executes SUMMIT function and exports results. 

Map Executes MAP function and exports results. 

Merge Executes MERGE function and exports results. 

Complement Executes COMPLEMENT function and exports results. 

AccHis Determines Accumulation histogram and exports results. 

AccDis Determines Accumulation distribution and exports results. 

GetIM Reports current setting for indexing mode. 

SetIM Sets indexing mode to the specified one. 

GetDP Reports current setting for degree of parallelization. 

SetDP Sets degree of parallelization to the specified one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

block key , as an interval on first resolution with start and stop being respectively the minimum and maximum coordinates

of the snapshots in the block. 

With Aggregation , the information of the snapshots within each block are then aggregated, thereby providing summary

statistics on the specific attribute(s). Storing custom aggregations for each block reduces snapshot access demands when a

particular aggregation is commonly used. The aggregation function defines the block value , which is generic in type and size,

for instance, ’count’ of intervals represented by grouped snapshots, or standard deviation and median of interval lengths. 

Di3 already provides built-in functions for default grouping and aggregation; the default grouping function groups con-

secutive snapshots that point to consecutive overlapping intervals, and the built-in aggregation function stores the max-

imum accumulation of each group. These functions improve operations such as COVER , SUMMIT and Accumulation
histogram , discussed in Section 3.1 , which depend on accumulation of intervals. Indeed in a COVER query, when the

max accumulation of a block is lower than the min accumulation accMin of the query, or the min accumulation of a

block is higher than the max accumulation accMax of the query, the entire group of intervals does not have an interval

that satisfies the query and can be fully skipped. Moreover, disjoint groups can be processed in parallel with no need for

synchronization mechanisms. 

4. Experiments 

We start with an evaluation of Di3 enacted from a user interface, and then we present a comparison with BEDTools and

BEDOPS, the most popular tools for genomic region calculus. 

4.1. Di3 evaluation 

We customized Di3 to the genomic domain by building the Di3B component at the business logic layer that initializes

several independent Di3 instances, one for each DNA chromosome and strand; the Di3BCLI client at presentation layer (see

Fig. 2 ) provides user interaction through a set of commands. These include: primitives for initializing the indexes, primitives

for the operations of Section 3.1 , and primitives for setting indexing modes and parallelism. 

In general, the Di3BCLI commands (listed in Table 1 ) have standard command argument structure, where the number

of arguments varies between different commands. Having executed a command, its runtime is reported on console, and

also saved in a user-defined log file. The Index and BatchIndex primitives take respectively single sample or a collection of

samples (specified using wildcard characters) as argument and, based on the indexing mode, index the intervals in single-

pass or double-pass mode. Under double-pass indexing mode, the command 2Pass (which takes no arguments) executes

the second-pass of the indexing. The second resolution of Di3 is created/updated by the 2RI command (that takes no argu-

ments). The Cover and Summit commands take minAcc , maxAcc , aggregate , and output arguments, execute the functions with

the parameters and export results to the output file. The Map command takes reference , aggregate , and output arguments, ex-

ecutes the function and exports results in the output file. The Merge , Complement , AccHis , and AccDis commands take output

argument, execute the function and report results to the output file. The GetIM reports current setting for indexing mode,

and SetIM takes a mode argument which is either single or multi , and sets indexing mode accordingly. Finally, GetDP reports

current setting for degree of parallelization, and SetDP takes two numbers as chr-level and Di3-level degree-of-parallelization

and updates the execution environment accordingly. 

We benchmarked Di3 by exploiting two levels of parallelism: chromosome-level parallelism (i.e., executing operations on

multiple chromosomes concurrently) and Di3-level (i.e., each chromosome is further divided into multiple sections or bins ,

and multiple threads process the resulting sections). In all the experiments of this section, we used an Amazon EC2 machine

running Microsoft Windows Server 2012 with an Intel ® Xeon 

® E5-2670 v2 CPU, 320 GFLOPS, and 122 GB RAM. We used
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Table 2 

Datasets used for Di3 benchmarking. 

Label Sample count Region count Dataset size (GB) Type 

A1 500 28 ,392,674 1 .35 Narrow peaks 

A2 10 0 0 59 ,980,303 3 .17 Narrow peaks 

A3 1500 94 ,997,460 4 .87 Narrow peaks 

A4 20 0 0 143 ,563,549 6 .98 Narrow peaks 

A5 2970 177 ,903,976 10 .77 Narrow and broad peaks 

Fig. 11. Interval/region accumulation distribution in datasets A1, A2, A3, and A4. 

 

 

 

 

 

 

 

 

 

 

 

 

five datasets of ENCODE narrow and broad peak samples, as described in Table 2 ; the datasets vary in size, but are similar

in interval accumulation distribution. Fig. 11 shows the accumulation distribution of datasets A1, A2, A3, and A4; statistics

for the A5 dataset follows similar distribution. 

4.1.1. Benchmark of MAP 
First, we assessed the performance of MAP , an operation which directly operates upon coordinates. We considered as

reference a genomic region sample from the ENCODE repository, which includes 196,180 regions (8.9 MB in size); the MAP
was performed over the five datasets in Table 2 . Fig. 12 shows excellent scalability with respect to growth in data size.

Note that the reference sample is also an ENCODE narrow peak sample; hence, its intervals are mostly co-localized with the

indexed intervals. Therefore, a very big percentage of indexed data overlaps with the reference intervals. 

4.1.2. Benchmark of accumulation operations 

Second, we assessed Di3 performance for COVER , SUMMIT , Accumulation histogram and Accumulation 
distribution operations. The function SUMMIT is a variation of COVER and, similarly, the function Accumulation
distribution is a variation of Accumulation histogram ; therefore, their performance is at the same scale (see

Fig. 13 ). Both the Accumulation histogram and distribution functions scan all snapshots; hence, their performance can be

evaluated as the maximum time required for a full scan of Di3, which is linear to dataset size. Likewise, the functions

COVER and SUMMIT require linear scan of snapshots for regions of specific accumulation of intervals. However, the second

resolution index prunes a percentage of linear scan based on minAcc and maxAcc parameters, and on their overlap with

the accumulation distribution of the data. 
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Fig. 12. Benchmarking MAP function of Di3. 

Fig. 13. Benchmarking linear scan functions of Di3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The less effective pruning is expected with parameters set around the peak of accumulation distribution; the COVER and

SUMMIT functions are expected to be faster than the Accumulation histogram and Accumulation distribution
with such choice of parameters. We executed COVER and SUMMIT functions with minAcc and maxAcc at the peak of

accumulation distribution (e.g., minAcc = 80 and maxAcc = 100 for A2); Fig. 13 confirms that even with the peak of the

parameter values the functions perform faster than full scan. 

4.1.3. Effect of accumulation distribution 

Data distribution may have a strong effect on the performance of an index. For instance, non-uniformly distributed data

may accumulate a big load of information on some keys, while other keys may have lighter load; this is suboptimal because

some keys are very expensive to process, while others are cheap. This affects also parallel execution, as some threads are

busy for a very long time, while others are set free very early. The first step to avoid such draw backs is at design level, by

making correct decisions, based on the nature of the data, for the key and value of the index. 

In this section, we evaluate Di3 design and performance for data with different accumulation distribution. For this we

simulated 10 datasets, each containing 500 samples and 20 0,0 0 0 regions in each sample. Datasets differ in the percentage

of intersecting intervals (in the extreme case, all samples contribute to intersection; therefore, the accumulation of the

intersection region equals to the number of samples). A dataset with no intersection is labeled ‘0%’, while a dataset with

all intervals intersecting is labeled ‘100%’. We executed Di3 functions on all simulated datasets. Fig. 14 shows the results.

Minor variations in function runtime throughout the datasets are due to the randomly generated positions and overlapping

on intervals in the datasets. The figure highlights that Di3’s performance is independent from the accumulation distribution

of the input datasets. 
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Fig. 14. Function performance on simulated data. The dotted lines are the polynomial trend line of order 2 of each function. 

Table 3 

Datasets used for Di3 benchmarking versus BEDTools and BEDOPS. 

Label Sample count Region count Dataset size (MB) 

B1 90 1 ,407,493 97 .4 

B2 180 4 ,649,767 322 .0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Comparison with state of the art tools 

In this section we compare the performance of Di3 with the one of two tools commonly used in genomic region pro-

cessing, namely, BEDTools [43] and BEDOPS [40] . We ran the tools and Di3 on a standard laptop (Intel ® Core 
TM 

i3 2.10 GHz

and 8 GB RAM). We ran BEDTools and BEDOPS under Linux, and Di3 under Microsoft Windows ® 10 operating system. We

prepared Python and shell scripts for the batch execution of BEDTools and BEDOPS, and executed Di3 in-memory. 

Among the possible operations that are available from the Di3BCLI, BEDTools and BEDOPS implement the MAP operator,

i.e., given a reference sample, find input intervals overlapping with the reference regions. Therefore, we compared the MAP
operator of Di3 against the ’ bedtools map ’ from BEDTools and the ’ bedmap ’ from BEDOPS. We considered two typical usage

scenarios in genomic region processing: ( i ) personal repository, and ( ii ) on-the-fly processing. 

4.2.1. Personal repository 

This is a common scenario for bioinformaticians, where a personal repository of in-house data, as output of the execution

of a NGS data processing pipeline, and/or data obtained from publicly available repositories is persistent on their machine.

Such data are stored for further processing or to be used for comparative evaluation and cross-referencing. The repository

is a collection of properly organized files, indexed and persistent in Di3. We used two datasets of ENCODE narrow peak

samples as in Table 3 , and a reference sample including 196,180 regions (8.9 MB in size). 

The data were pre-processed, i.e., filtered, and regions in samples were sorted for BEDTools and BEDOPS, and indexed

for Di3. Hence, benchmark started from pre-processed data, and for comparison considered only execution time. As Fig. 15

shows, Di3 performs significantly faster than BEDTools and BEDOPS. 

4.2.2. On-the-fly processing 

Processing data on-the-fly is a bioinformaticians’ daily-based scenario, where a relatively small dataset is obtained from

the execution of a NGS data processing pipeline and may not be archived for further evaluation. We benchmarked the in-

memory version of Di3 versus BEDTools and BEDOPS on MAP operation using one reference, including 196,180 regions (8.9

MB in size), and three datasets of ENCODE narrow peak samples, described as in Table 4 , as target. 

The data were not pre-processed: data were not sorted for BEDTools and BEDOPS, and not indexed for Di3. Hence, the

execution time incorporated pre-processing time in all cases. Fig. 16 shows that Di3 performs faster than BEDTools and

BEDOPS on the three datasets. This highlights that Di3 is also an agile back-end data structure for on-the-fly processing,

even by incorporating the indexing time within the processing time. 
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Fig. 15. Benchmark: Personal repository scenario. 

Fig. 16. Benchmark: On-the-fly processing scenario. 

Table 4 

Datasets used for Di3 benchmarking versus BEDTools and 

BEDOPS for on-the-fly processing. 

Label Sample count Region count Dataset size (MB) 

C1 12 89 ,623 6 .17 

C2 22 258 ,406 17 .80 

C3 45 456 ,385 31 .50 

 

 

 

 

 

 

 

 

5. Use of Di3 as a component within MuSERA 

The analysis of NGS ChIP-seq samples outputs a number of enriched regions (ERs) for NGS reads, each indicating a

protein-DNA interaction or a specific chromatin modification. ERs (or ‘peaks’) are called when the enrichment p-value is be-

low a user-defined threshold. ERs with a p-value close to that of the background signal are either a background signal which

is slightly enriched due to some biological or technical bias in the experiment, or indeed are biologically important regions

with an enrichment less significant than expected. The NGS protocol is subject to noise; to avoid a large number of false-

positive ERs, commonly used thresholds are often very stringent, yielding many false-negatives. However, the guidelines of

the ENCODE project recommend repeating a NGS experiment at least twice [32] on replicate samples, where the information

contained in replicates is expected to be largely overlapping. We recently proposed a novel method [27] that, by leveraging
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on available replicates, differentiates between sub-thresholded ERs and truly non-ERs, using a rigorous combination of the

significance of individual ERs that overlap in replicate samples. 

The results of the method should be further assessed using common procedures, such as visualization on a genome

browser, functional analysis, or nearest-neighbor search. To this end, we recently proposed Multiple Sample Enriched Region

Assessment (MuSERA) [28] , a novel graphical tool that leverages on Di3 (On-the-Fly scenario) to implement ( i ) comparative

analysis of replicate samples using the method originally proposed in [27] , ( ii ) ER functional analysis, ( iii ) region nearest

neighbor search, ( iv ) correlation assessment, and ( v ) an integrated user-friendly genome browser. 

MuSERA builds the business logic layer and presentation layer above Di3 (recall Figs. 2 and 4 ). It encapsulates peak

regions as intervals for Di3, and provides particular comparative analysis driven operations (e.g., methods for combining

p-values, and classification of peaks as true sub-thresholded ERs or artifacts) via UDF. Additionally, it uses an in-memory

implementation of B+ tree to implement the physical layer ( Fig. 4 ). 

5.1. Comparative analysis 

MuSERA combines statistical evidence of an ER (i.e., its p-value) with the co-localized evidence from replicates (it uses

only the strongest evidence from each replicate if more than one evidence - i.e., ER - from a replicate is co-localized), and

confirms/discards ERs based on the comparison between their combined evidence and a user-defined threshold. For this

functionality, MuSERA benefits from Di3 MAP function with a UDF for comparative analysis, explained in [27] ; the procedure

is as follows: 

i. MuSERA provides graphical means to select and load replicates. 

ii. MuSERA indexes replicates in Di3 on-the-fly. 

ii. Through a graphical user interface (GUI), MuSERA gets user-defined parameters for a UDF for the comparative analysis. 

iv. MuSERA executes Di3 MAP with reference sample (the replicate against which ERs are comparatively evaluated) and a

UDF that: 

(a) In each replicate sample, choses the interval with the lowest p-value from the set of intervals overlapping with a

reference interval. 

(b) If the number of overlapping intervals satisfies a user-defined minimum threshold, then combines the p-values of the

overlapping intervals and the reference interval using the Fisher’s method [19] . 

(c) If the combined stringency satisfies a user-defined threshold, then stores the intervals as confirmed, or as discarded

otherwise. 

5.2. Genome browser 

MuSERA plots a given ER and all the neighbor ERs from replicates, as well as user-uploaded known genomic features (e.g.,

genes or promoter regions) at a given distance (e.g., within 100k base-pair). This function leverages again on the MAP (i.e.,

‘given an interval, find intervals overlapping with it’) and the Nearest neighbor search functions of Di3. The determined

intervals are then plotted using a dynamic plot that allows zoom in and out, and pan, which together with optimal retrieval

from Di3 and plot features provides a high-end genome browser (see Fig. 17 Panel A). 

5.3. Functional analysis 

Assigning an ER to the closest up-/down-stream genomic feature (e.g., gene Transcription Start Site (TSS), or Coding

Sequence (CDS)) is a very useful and common task to help the biological interpretation of NGS results. MuSERA implements

it optimally using Di3; it leverages on relative ordering of intervals accessible via a consecutive set of snapshots, and on

the Nearest neighbor search, to calculate the ER-to-feature conservation rate (which is determined as the number of ERs

intersecting with genomic annotations) and the ER-to-feature distance distribution between ERs and the closest up-/down-

stream features (see Fig. 17 Panel B). 

5.4. Nearest neighbor 

MuSERA computes the ER nearest neighbor distance distribution with functional annotations, leveraging on Nearest 
neighbor search function of Di3. The distribution facilitates biological assessment of ERs; for instance, it helps evaluating

that comparatively confirmed weak ERs are relatively closer to functional annotations than comparatively evaluated true

non-ERs (see Fig. 17 Panel C). 

5.5. Correlation assessment 

MuSERA determines correlations, both at region-level and base-pair-level, between replicates. They are respectively com- 

puted as the ratio between the number of overlapping regions (region-level correlation), or genomic bases (base-pair-level
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Fig. 17. MuSERA at work. (A) ERs on the genome browser together with known genomic feature annotations (i.e., promoter regions); (B) Up-stream and 

down-stream distances of a given ER to the closest genomic features; (C) Distances of a given ER to the nearest neighbors. Distances are measured in base 

pairs (bp). 

 

 

 

 

 

correlation), and the total number of regions, or genomic bases considered, producing the respective Jaccard similarity co-

efficients. Base-pair-level correlation is more stringent and is to be preferred when the position of the ERs is known with

certainty, while region-level correlation is instead more permissive, as it scores the overlap of entire regions rather than

quantifying the magnitude of this overlap; this correlation measure is then to be preferred in presence of heterogeneous or

noisy data sets. MuSERA estimates both correlations leveraging on the SUMMIT function of Di3, that calculates density-based

co-occurrences. 
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6. Conclusion 

We proposed Di3 (1D Interval Inverted Index), a multi-resolution single-dimension data structure for interval-based data

queries. We presented Di3’s method by illustrating its model, data structure, and supported operations, and then we demon-

strated its effectiveness, both as a stand-alone tool and in comparison with the state-of-the-art systems BEDOPS and BED-

Tools. Finally, we showed how Di3 was used as a software component within MuSERA, a tool for multiple sample peak

calling. We proved that Di3 is a flexible, high-performance component, whose use as a self-standing system is much supe-

rior to current state-of-the-art. 

Previously, we implemented GMQL, the innovative region-based genomic data querying system, by using cloud computing

and specifically the Apache Spark and Flink engines within the Apache Hadoop framework; as future work, we plan to

support an alternative implementation of the domain-specific operations of GMQL by using Di3, so as to compare cloud-

based computing with specialized indexing on very large datasets. 
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