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Matrix Factorization-based Technique for Drug Repurposing Predictions
G. Ceddia, P. Pinoli, S. Ceri, and M. Masseroli

Abstract— Classical drug design methodologies are hugely
costly and time-consuming, with approximately 85% of the new
proposed molecules failing in the first three phases of the FDA
drug approval process. Thus, strategies to find alternative indi-
cations for already approved drugs that leverage computational
methods are of crucial relevance. We previously demonstrated the
efficacy of the Non-negative Matrix Tri-Factorization, a method that
allows exploiting both data integration and machine learning, to
infer novel indications for approved drugs. In this work, we present
an innovative enhancement of the NMTF method that consists of a
shortest-path evaluation of drug-protein pairs using the protein-to-
protein interaction network. This approach allows inferring novel
protein targets that were never considered as drug targets before,
increasing the information fed to the NMTF method. Indeed, this
novel advance enables the investigation of drug-centric predic-
tions, simultaneously identifying therapeutic classes, protein tar-
gets and diseases associated with a particular drug. To test our
methodology, we applied the NMTF and shortest-path enhance-
ment methods to an outdated collection of data and compared
the predictions against the most updated version, obtaining very
good performance, with an Average Precision Score of 0.82. The
data enhancement strategy allowed increasing the number of pu-
tative protein targets from 3,691 to 15,295, while the predictive
performance of the method is slightly increased. Finally, we also
validated our top-scored predictions according to the literature,
finding relevant confirmation of predicted interactions between
drugs and protein targets, as well as of predicted annotations
between drugs and both therapeutic classes and diseases.

Index Terms— Non-negative Matrix Tri-Factorization,
drug repurposing, drug repositioning, shortest-paths, link
prediction, complex networks

I. INTRODUCTION

The process of drug development has become more and more time-
consuming and expensive during the years. Recent studies report an
average of 15-years period and over $2 billion to bring a new drug
to the market [1], [2]. The challenge for new compounds is to make
it to the phase II of clinical trials; only 10% pass the phase I due
to safety concerns and ineffectiveness [3]–[5]. This leads to a steady
drop in productivity; thus, the drug discovery process can no longer
satisfy the market demand for new treatments, and rare disorders that
need de novo therapies are completely neglected [3], [6]. As a result,
big data analysis of biological and medical data has been considered,
both to investigate new therapeutic opportunities for already approved
drugs (namely drug repurposing), as well as to study their actions and
adverse effects.

Drug repurposing (also called drug repositioning) is a strategy that
deals with the limits of drug discovery by finding new purposes
for known drugs. This approach leverages deep knowledge of drugs
and gives several advantages over developing a completely new
compound [1]. The percentage of success is higher: as repurposed
drugs have already passed safety controls in different biological
models and humans (when phase I of clinical trials is completed), the
only critical step for these drugs to be approved for the new purpose
is the efficacy during trial phases [1]. Therefore, the time spent on
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the development of a repurposed drug is extremely shorter than that
needed for a new drug [7]. Furthermore, the repurposing strategy
takes fewer investments: while the costs of phase III for a repurposed
drug are similar as for a new drug, those of phase I and phase II are
substantially reduced [1]. Overall, drug repositioning is a less risky,
more rapid and cheaper approach than the traditional drug discovery,
and it may also lead to interesting new findings associated with known
drugs. It may be performed either experimentally or computationally;
however, computational algorithms that can give indications on the
experimental repurposing process are of pivotal importance to narrow
down the repositioning search.

In this perspective, we previously proposed a novel computational
method for drug repurposing prediction, which takes advantage of
multiple data types and sources available [8], [9]. Specifically, we
showed how the integration of several heterogeneous data types
from different sources with the network-based Non-negative Matrix
Tri-Factorization (NMTF) approach enables drug-therapeutic class,
drug-protein target, and drug-disease link predictions. In this paper,
we introduce an important innovation of the method, by adopting
shortest paths as a means to infer more connections among nodes
than those explicitly included in the integrated networks. Thanks
to this innovation, our shortest-path enhanced NMTF method may
lead to novel drug-protein target interaction discoveries, new drug
annotations and new drug-disease associations. In particular, the
method allows inferring as drug targets proteins that are not directly
associated with known drugs. To the best of our knowledge, the use
of shortest path in NMTF is original, although shortest paths have
been successfully injected in many other computational methods.

II. STATE-OF-THE-ART COMPUTATIONAL APPROACHES
FOR DRUG REPURPOSING

Computational approaches for drug repurposing can be classified
into five major groups, which are: signature matching, molecular
docking, genetic association, pathway mapping and backward clinical
analysis techniques [1].

Signature matching is based on the comparison of actions/effects
between a drug and another drug, disease, or phenotype [10].
Comparisons can be computed by matching transcriptomic sig-
natures, chemical structures, or adverse effect profiles [1]. Thus,
drug-drug comparisons can be done by calculating the differential
gene expression profiles of a biological specimen before and after
treatment with each drug and then comparing them [11]. We can
also match the transcriptomic signatures of an untreated disease
and a drug-treated biological specimen; if the two signatures are
negatively correlated, then the drug may have a potential effect on that
disease [12]. Drug-drug similarity approaches for drug repurposing
state that if two drugs are significantly similar (according to their
induced transcriptomic signatures, chemical structures, or adverse
effect profiles), then they could share therapeutic applications [13],
as presented in [14]. Successful examples employing the signature
matching techniques include [15]–[18]. So et al. [15] proposed a
framework to compute similarities between transcriptomic signatures
from genome-wide association studies (GWAS) and the Connectivity
Map [19]. Wang et al. [16] extracted similar signatures from the entire
GEO repository [20] by using a particular training set. Iorio et al. [17]
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refined the CMap signatures using drug secondary effects. Aliper
at al. [18] integrated a large amount of transcriptomic signatures
with MeSH therapeutic use data to classify drugs by therapeutic
categories using deep neural networks. However, these approaches
have limitations associated with signature data, including the quality
of measurements and the different dosages from in vitro to in vivo
models.

Molecular docking is based on 3D structure similarity between
drugs and therapeutic targets, and it is used to predict new binding
opportunities for drugs [21]. Although this technique has several
issues, including data availability, its applicability has improved over
the years [1].

Genetic association and pathway mapping techniques are strictly
correlated. GWAS identify novel genetic variants associated with
common diseases, i.e., they provide information about possible new
therapeutic targets. From the drug repositioning perspective, drugs
that are already used for other diseases could be repurposed to address
the novel targets. GWAS data are also adopted for pathway-based or
network-based approaches, where comparative network analyses of
drug-treated versus untreated disease phenotypes provide repurposing
candidate, as presented in [22], [23].

In addition, post-marketing surveillance and clinical trial data can
lead to drug repurposing by methodical analysis [1]. Limitations of
this approach lie on the accessibility of data, due to commercial and
confidentiality reasons [1].

Anyway, computational methods that can integrate more data
types from different sources have provided better predictions and
wider analyses of the effects of drugs [3], [24]. Network-based
drug repositioning is the baseline to easily integrate several data
sources summarizing genome-wide data for drugs, biomolecules,
and diseases. Each source can be interpreted as a network and the
integrated network can be used to repurpose a single drug or a
combination of drugs [24]. For example, Luo et al. [25] proved
that integrating heterogeneous data sources with their network-based
method leads to better performances of the drug repositioning model
than using similarity-based methods. Other network-based methods
include [26]–[29]. Wang et al. [26] used chemical structure, target
protein, and side-effect data to correlate drugs with diseases; the
correlations are used to predict novel drug-disease interactions using
Support Vector Machines (SVM). Napolitano et al. [27] integrated
gene expression, chemical structure, and target interaction profile
data into a drug-similarity matrix used as input for a multi-class
SVM classifier. Performance comparisons between drug-similarity
matrices from a single source or from integrated sources as input
for the SVM classifier showed better results for the integrated source
ones [27]. Zitnic et al. [28] instead used a matrix factorization
approach to classify diseases by combining several data types about
drugs, diseases, and genes. The results of this approach demonstrated
that each added data type improves the classification performance.
Alaimo et al. [29] used a tripartite graph to infer associations between
molecules and diseases. All these examples together prove that drug
integrated data and network-based methods lead to more powerful
predictive models than other approaches [3].

Our study aims at providing a novel network-based computational
method that easily integrates heterogeneous data from different
sources, and predicts drug annotations (therapeutic classes and drug
categories), drug-protein target and drug-disease associations with
good reliability. The baseline of our approach is the plain Non-
negative Matrix Tri-Factorization method applied to drug reposition-
ing [8]; for it, we previously proposed some computational optimiza-
tions regarding initialization techniques and parameter choice [9].
We also proved that integrating multiple data types improves its
performance with respect to considering a single data type [9].

Here, we significantly extend our previous work by proposing
a novel enhanced computational framework innovatively using a
shortest-path based approach; the most significant innovation ap-
plies to protein networks, as it enables to build drug-protein target
predictions for proteins that are not known to be targeted by any
drug, through their indirect associations with other targets of known
drugs. Thus, our new framework leads to novel drug-target interaction
discoveries. Comparisons with state-of-the-art methods show that
our shortest-path enhanced NMTF-based approach outperforms the
others. We report top-scored predictions obtained with our method
and validate them with biological findings from the literature and wet
lab experiments, demonstrating the huge potential of our method. For
example, we predict interesting drugs as estrogen receptor interactors
and as associated with some cancer types, and then find experimental
validation in the literature of both their activity as estrogen receptor
ligands and their anti-proliferative effects that may play a role in
cancer treatment. We also find drug-therapeutic class predictions that
give indications on the possible effects of drugs never annotated
before.

III. METHODS

Our novel enhanced method for drug repurposing, aiming at
predicting both new therapeutic indications and protein targets for
known drugs, comprises two macro steps: (a) the integration of
heterogeneous data about drugs and proteins, which might be possible
drug targets, and (b) the prediction of novel information, i.e., associ-
ations between data entities. The first task is achieved by modeling
different entities and their relationships as a multi-partite graph,
while the second one by means of a matrix factorization technique,
namely the Non-negative Matrix Tri-Factorization [30], applied on
the association matrices of the multi-partite graph. In this Section,
we describe these two steps on a generic multi-partite graph.

A. Baseline: Non-negative Matrix Tri-Factorization

Consider a matrix RAB ∈ R+
(|A|×|B|) to be the association

matrix between the nodes of a set A and the nodes of a set B of a
graph, where R+ = {x : x ∈ R∧ x ≥ 0} denotes the set of positive
real numbers and, for a given pair of nodes a ∈ A and b ∈ B, the
element [a, b] ∈ RAB is RAB [a, b] = ω > 0 if a and b are connected
by an edge of the graph with weight ω, RAB [a, b] = 0 otherwise.
While the Non-negative Matrix Tri-Factorization is a general purpose
method that can be applied to factorize any matrix of non-negative
elements [31], for the sake of simplicity and conciseness we restrict
our discussion to the aforementioned association matrix RAB . Thus,
by means of NMTF, for a given pair of parameters 0 < k1 < |A| and
0 < k2 < |B|, we can approximate the matrix RAB with a matrix
R̂AB computed as the product of three factors:

RAB ≈ R̂AB = GASABG
T
B

such that GA ∈ R(|A|×k1)
+ , SAB ∈ R(k1×k2)

+ and GB ∈ R(|B|×k2)
+

are the three matrices of constrained size that minimize the Frobenius
norm:

‖RAB −GASABGTB‖
2

The matrices GA and GB are constrained to be orthogonal, i.e.,
GAG

T
A = I and GBG

T
B = I , with I the unitary matrix; this

guarantees the uniqueness of the factorization solution.
Given a non-negative matrix, its NMTF decomposition is com-

puted, starting from an initialization of the three matrices GA,
SAB and GB , by iterating the application of a set of multiplicative
update rules that compute the values of the three matrices at the
current iteration from the values of the same matrices at the previous
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iteration. Such multiplicative update rules, as first proposed in [30]
and described in detail in [9] for the drug repurposing application,
guarantee that the Frobenius norm between the input matrix and its
NMTF reconstruction (i.e., R̂AB) monotonically decreases, with a
better approximation being computed at each iteration. Thus, the
multiplicative update rules are carried on until a stop criterion is
met (e.g., the improvement of the Frobenius norm between the
input matrix and its approximated decomposition in two subsequent
iterations is below a user-specified threshold [32]).

One of the most interesting properties of the NMTF is the possi-
bility to easily extend the decomposition to the association matrices
of a network of two or more layers (i.e., sub-graphs). Suppose that,
in addition to the two sets A and B of nodes, in the network we have
a third set C of nodes, and let RAB and RBC be the association
matrices between the elements of A and B and between the elements
of B and C, respectively. One can use the NMTF to compute a set of
non-negative matrices GA, GB , GC , SAB and SBC that minimizes
the error:

‖RAB −GASABGTB‖
2 + ‖RBC −GBSBCGTC‖

2

Notice that in such formulation the matrix GB belongs to the
factorization of both the RAB and RBC association matrices; thus,
its values are influenced by the information in both the sub-graphs
these matrices represent. Using this chaining rule, we can compute
simultaneously the NMTF decomposition of all the association ma-
trices in a multi-partite network.

B. Optimizations: Initialization, Stop Criterion and Parameters

Different initialization strategies for the NMTF can be adopted;
indeed, the selection of a better initialization may lead to some
advantages, such as avoiding local optima or requiring less iterations
to reach the convergence [33]. In our previous work [9], aside of
the trivial random initialization, we investigated several alternatives,
namely the random ACOL, the k-means clustering and the spherical
k-means clustering initializations. The latter one showed better results
than other techniques for the drug repurposing application. Thus, we
adopt the spherical k-means also in this work, particularly for the
results that we present in the next Section III-C. We then verified
that it gives better results also in this case (data not shown).

A second choice in the scientist’s hand is the stop criterion used
to decide when terminating the iteration of the multiplicative update
rules. The convergence of the algorithm to a local stationary point
has been proven by means of the minimization of the objective
function (i.e., the approximation error of the NMTF decomposition)
and the use of the multiplicative update rules [34]. The convergence
is measured as the relative difference between the objective function
values at two successive iterations of the algorithm [32], [35]. The
optimization is hence stopped when the relative difference of the
objective function reaches a user-specified threshold [35]:

|Ji+1 − Ji|/Ji < ε

where J is the objective function, i is the iteration, and ε = 10−3

is used in our experiments (following the results presented in [9] for
the drug repurposing application).

A final important aspect of the NMTF is the choice of the
dimensions of the decomposition factor matrices. In our previous
studies regarding the drug repurposing application, we also tested
various methods to identify the best set of such parameters, and
found that the dispersion coefficient metric [31] is the most suitable
choice [8], [9]; this coefficient ranges between 0 and 1, with higher
values indicating more stable solutions. Thus, we select the set of
parameters that maximizes the dispersion coefficient.

C. Shortest-Paths Enhanced Matrix

Shortest-path analysis has several biological applications. For
example, Zhou et al. [36] used the shortest-paths to find transitive
functional annotations of genes in a network based on expression
data. The aim of our application is different: we want to quantify
the minimum distance between two elements of different type in a
bipartite network, as a weight of their possible interaction. When
additional information about relationships between elements of the
same type is available, we innovatively propose to take advantage
of it in order to infer indirect unknown relationships between these
elements and those of another type, which some of these elements
are known to be directly associated with. This is particularly relevant
since it also allows increasing (typically greatly) the amount of these
elements that can be modeled as nodes of a multi-partite graph, i.e.,
beyond the only nodes with known relationships with other nodes
of the graph. More specifically, we propose a shortest-paths-based
method to infer unknown relationships between the nodes of a multi-
partite graph, as well as between them and other nodes that were not
originally linked in the graph, thus largely increasing the number of
both the graph edges and the nodes of a sub-graph. We show how
to use such a method to enhance a graph association matrix in order
to improve NMTF predictions and infer novel putative associations
between two sets of the graph nodes.

Consider two sets A and B of nodes connected by a bipartite
graph, and suppose that intra-set node relationships are also available,
e.g., for the nodes in B (if such relationships are available also for
the nodes in A, the following is straightforwardly extended). In this
case, given an association matrix RAB with the known relationships
between pairs of nodes a ∈ A and b ∈ B, we can construct a matrix
R′AB by substituting the elements RAB [a, b], which typically are
equal to 1 if a is known to be associated with b or 0 otherwise, with
a function of the shortest path between a and b. More in detail, we
search, if it exists, a path Pab = 〈b, b1, . . . , bi, . . . , bn, a〉 connecting
the node a with the node b through a sequence of nodes bi. Notice
that a path between a and b can generally comprise many other
nodes of A; by design, we decided to restrict our exploration only to
those paths that traverse as many edges as needed in the intra-nodes
relationship but only one link, specifically the last, from the RAB
association matrix. If at least one of such paths exists, we select one
of the shortest length. Notice that many of such shortest paths may
exist, but this is not relevant since we are only interested in the length
of the path and not in the actual traversed nodes. Finally, for each
pair of nodes a and b, we set the value of the matrix R′AB [a, b] as:

R′AB [a, b] =

{
α|Pab|−1, if Pab exists
0, otherwise

where |Pab| denotes the length of any of the shortest paths between a
and b, and 0 < α < 1 is a parameter meant to reduce the importance
of the association between a node a and a node b that is mediated by
many other nodes in the set B. Notice that, if a and b are directly (i.e.,
known to be) connected then |Pab| = 1 and R′AB [a, b] = 1, while
the value of the inferred R′AB [a, b] weight decreases exponentially
with the length of the shortest Pab path, i.e., with |Pab|; moreover,
the lower is the value of the parameter α, the lower are the weights
that the method computes for the associations between the elements
of A and B connected through longer paths. In this way, we can
enhance an association matrix by adding to the included known
associations other weaker associations, inferred based on available
indirect relationships and as weak as the distance of the indirect
relation.
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D. Prediction of Novel Associations

Consider an association matrix RAB of (a layer of) a graph, its
enhanced version R′AB and its NMTF approximation R̂′AB . One can
use the latter matrix to infer novel associations between the elements
of the two sets A and B represented in the matrix. This can be
done by varying a threshold δ ∈ [0, 1] ⊂ R+ and constructing the
matrix R̂′

δ
AB such that R̂′

δ
AB [i, j] = 1 if and only if R̂′AB [i, j] > δ,

otherwise R̂′
δ
AB [i, j] = 0. As a common practice in machine learning

applications, we can define the four classes of predicted elements,
namely True Positives (TPδ), False Positives (FPδ), True Negatives
(TNδ) and False Negatives (FNδ) for each δ ∈ [0, 1]. However,
differently from one would expect such classification to be performed,
in our approach we compare R̂′AB directly against RAB , rather than
R′AB . This implies that the enhancement of the association matrix
by means of the shortest-paths method is an influential component
of the overall prediction framework. Therefore, for a given δ we call
TPδ the pairs [i, j] for which R̂′

δ
AB [i, j] = RAB [i, j] = 1, FPδ the

ones for which R̂′
δ
AB [i, j] = 1 and RAB [i, j] = 0, TNδ the ones

for which R̂′
δ
AB [i, j] = RAB [i, j] = 0, and FNδ the ones for which

R̂′
δ
AB [i, j] = 0 and RAB [i, j] = 1. We are particularly interested

in the False Positives, since they may indicate novel associations
inferred by the method between the elements of the two sets A and
B, i.e., which are not in the original matrix RAB [i, j] since still
unknown and not discovered yet by traditional methods.

E. Validation Metrics

Once the R̂′AB matrix has been computed, we can evaluate the
Recall, or True Positive Rate (TPR), and the Precision of the method
as a function of δ:

Recallδ =
TPδ

TPδ + FNδ
Precisionδ =

TPδ
TPδ + FPδ

where TPδ , FNδ and FPδ are as defined in Section III-D. By
varying the δ value in the range from 0 to 1, we can compute the
Average Precision Score (APS), which corresponds to the area under
the Precision-Recall curve:

APS =
∑

δ1,δ2,...,δn

(Recallδi − Recallδi−1
)Precisionδi

For the performance evaluation we also use the False Positive Rate
(FPR) and the Area Under the Curve (AUC) of the FPR-TPR curve,
or Receiver Operating Characteristic (ROC) curve, with:

FPRδ =
FPδ

TNδ + FPδ

F. Implementation and Availability

The method was developed in Python programming language. For
the enrichment of the drug-to-protein matrix by means of shortest
paths and protein-to-protein interactions we leveraged on the func-
tionalities of the NetworkX1 library. The software is open source
and publicly available at https://github.com/DEIB-GECO/NMTF-
DrugRepositioning.

IV. DRUG-RELATED DATA AND SOURCES

We integrate data about drugs and their therapeutic classes, protein
targets, and application in disease cares, as well as about protein-
protein interactions and associations between proteins and biological
pathways. In order to do it, we represent these heterogeneous data as

1https://networkx.github.io

a multi-partite network with five classes of nodes that represent ther-
apeutic classes, drugs, diseases, proteins, and pathways, respectively.
Network edges connect drugs to their recognized therapeutic classes,
to their known protein targets and to the diseases for whose care
the drugs are used, while proteins are connected to the biological
pathways in which they are involved. Furthermore, for the protein
and pathway nodes, we represent intra-class connections as well. The
former ones represent protein to protein interactions, while the latter
ones capture the existing hierarchy of biological pathways, from the
most generic to the most specific one. The full multi-partite graph is
schematized in Figure 1.

Fig. 1. Schematic representation of the multi-partite graph that inte-
grates the variety of data types and their relationships comprehensively
considered by our method. The labels on the connection lines represent
the name of the association matrices between the components of the
connected classes. Notice that proteins and pathways also have intra-
class relationships.

To build the multi-partite graph in Figure 1, we use multiple
heterogeneous data integrated from four different sources. Approved
drugs, their current indications (therapeutic classes) and protein
targets are taken from DrugBank [37] (version 5.1.2), pathways
in which the protein targets are involved are from Reactome [38]
(version 70), and drug-disease annotations from Therapeutic Target
Database (TTD) [39] (version of July 2019); we also consider protein-
protein interactions from BioGrid [40] (version 3.578) and pathway
hierarchical relationships from Reactome.

For the experiments described in Section V, we use 141 therapeutic
indications, 3,261 drugs, 3,691 protein targets, 1,914 pathways, 844
diseases and their relationships, with matrices R12, R23, R34, R25,
L3 and L4 containing 23,517, 13,433, 28,345, 2,406, 39,756 and
3,858 links, respectively.

In Section VI we extend the number of considered proteins to
15,295, by adding all the proteins that directly interact with at least
one of the 3,691 protein targets and using the shortest-path technique
to estimate their relationship weight with the considered drugs. This
allows the evaluation of a much greater number of novel potential
drug-target interactions.

V. COMPUTATIONAL VALIDATION METHODS AND
PREDICTION PERFORMANCES

To computationally evaluate the performance of our method, we
use two different strategies and measures, which explain how the
shortest-path enhanced matrix and the choice of the α and path length
parameters influence the NMTF-based method performance:
A. We measure the ability of our method to predict novel associ-

ations between drugs and therapeutic classes by computing the
APS on the R12 matrix for different values of the α and path
length parameters. To this aim, first, we run our method on an
outdated version of the data collection, including associations
between drugs and therapeutic classes retrieved from DrugBank
version 5.1.2 (released in December 2018). Then, we check
the obtained predictions on the latest DrugBank version (5.1.4,
released in July 2019), produced 7 months later. Such an updated
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version contains 508 novel therapeutic class-drug annotations,
which we use as validation set. Here, we evaluate our method
using the APS score since we are interested in evaluating how
the method is able to precisely find the missing associations.

B. We also measure the performance of our method in inferring the
correct drug-protein target interactions for proteins that are not
yet associated with any drug. In order to do so, we remove all the
edges of a set of randomly selected protein target nodes in R23

and compute the AUC ROC of the computationally predicted
interactions after using the shortest-path enhancement method
with different values of the α and path length parameters. For
this setting, we evaluate our method using the AUC ROC score
since we want the method to retrieve the complete interaction
profiles of the missing proteins in the best way.

Regarding the parameters related to the dimensions of the decom-
position factor matrices (Section III-B), we chose k1, k2, k3, k4
and k5 equal to 500, 141, 500, 500 and 300, respectively. For such
parameter values, the dispersion coefficients ρ1, ρ2, ρ3, ρ4 and ρ5
are equal to 0.998, 0.999, 0.985, 0.984 and 0.998, respectively. The
greater the dispersion coefficients, the greater is the performance
of the associated model [31]; for example, in our case for a bad
choice of parameter values (e.g., k1 = k2 = k3 = k4 = k5 = 10,
whose related dispersion coefficients are ρ1 = 0.931, ρ2 = 0.859,
ρ3 = 0.703, ρ4 = 0.628 and ρ5 = 0.821) the APS score and AUC
ROC values are 0.517 and 0.849, respectively, whereas a good choice
of parameter values as the ones we chose has the APS score and AUC
ROC values equal to 0.817 and 0.952, respectively.

A. Therapeutic Class-Drug Prediction Validation

Comparing DrugBank database versions 5.1.2 and 5.1.4, the newest
release includes 508 novel therapeutic class-drug annotations; we use
them as validation set for the evaluation of our method performance
in predicting new links in the R12 association matrix.

After applying the NMTF method to all the R12, R25, R′23 and
R34 matrices simultaneously (with DrugBank data from its database
version 5.1.2 and the R′23 matrix enhanced with shortest-path data),
we construct the R̂12 matrix by multiplying the computed factors
G1, G2 and S12. Then, we evaluate how well the validation set
links are estimated in the R̂12 matrix. In order to do so, we set a
threshold 0 ≤ δ ≤ 1 and create the binary matrix R̂δ12 by setting to
1 the R̂δ12[i, j] elements corresponding to R̂12[i, j] ≥ δ elements, 0
otherwise. Comparing the R̂δ12 matrix with the R12 one derived from
the newest DrugBank database version 5.1.4, we can distinguish the
matrix elements in the classical four classes: True Positives, equal to
1 in both R12 and R̂δ12, False Positives, equal to 1 only in R̂δ12, True
Negatives, equal to 0 in both R12 and R̂δ12, and False Negatives,
equal to 1 only in R12.

Figure 2 shows the goodness of the therapeutic class-drug associa-
tion prediction for different values of the α coefficient (as defined in
Section III-C) and of the maximum path length considered in R′23. To
obtain each point in Figure 2 we modified the R′23 matrix such that
the maximum path length considered in R′23, for 10 repetitions of the
NMTF algorithm, was equal to the x-axis value of the point. Thus,
Figure 2 shows the relevance of adding more and more information
in R′23 from the therapeutic class-drug prediction point of view.

As it can be seen, setting α equal to 0.2 provides the best
performances over path lengths; indeed, it gives a very high average
APS, equal to 0.82, better than the APS score (equal to 0.79) for
unitary path length (i.e., for the R23 matrix without the shortest-path
enhancement). Thus, the NMTF method applied after shortest-path
enhancement can predict missing links in the R12 association matrix
better than when the NMTF method is applied to binary association

� � � � 	 
 � �  ��
�����������

��
	

����

���	

����

���	

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

�������
�������
�������
�������
������	
������

�������
�������
������

Fig. 2. Performance representation of the therapeutic class-drug
association prediction method (Section V-A). Average Precision Score
(APS) over the maximum path length of the associations included in
the R′

23 matrix. Each curve represents a different α parameter value,
as reported in the figure legend; each point is the mean value over 10
repetitions of the NMTF method and the error bars show the standard
deviation across repetitions.

matrices only. Interestingly top score predictions are confirmed by
both the plain NMTF (without shortest-path) and the shortest-path
enhanced one; however, shortest-path addition allows us to better
differentiate lower score predictions. This in turn has a positive
effect on the overall performance of the prediction method. Moreover,
the curve that corresponds to an α coefficient equal to 0.2 has
very stable performances across path lengths, much more than the
curves corresponding to α coefficients greater than 0.3, proving the
robustness of our parameter choice.

Furthermore, for more a systematic validation we compared the
distributions of the predicted probabilities of all the 508 novel
therapeutic class-drug annotations included in the validation set with
the distribution of the predicted probabilities of all the other such
associations considered. The mean and median of the former ones
resulted 0.179 and 0.117, respectively, whereas those of the latter
ones were 0.154 and 0.098, respectively; the two distributions resulted
statistically significantly different according to the Wilcoxon-Mann-
Whitney test (p-value = 1.65 · 10−4).

B. Drug-Protein Target Prediction Validation
To demonstrate that our method can properly predict novel drug-

protein target interactions also for proteins that are not known as
targets of any drug, for 300 protein targets randomly selected we
remove all their drug-target binary associations (1,555 associations,
regarding 898 drugs); then, we compute the shortest-path enhanced
matrix R′23, with the missing direct associations removed but lever-
aging on protein-protein interaction information, and we apply the
NMTF approach. Finally, we evaluate if the computed R̂′23 matrix
properly reconstructs the original drug-protein target interactions; to
do so, after setting a value for the threshold 0 ≤ δ ≤ 1, we create
the binary R̂′

δ
23 matrix, where TP, FP, TN and FN are as defined in

Section III-D.
In Figure 3 we evaluate the shortest-path-based enhancement

method for adding proteins in the prediction process that are not yet
annotated as targets of drugs. The NMTF method, applied considering
the binary association matrix R23, cannot include proteins that are
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Fig. 3. Performance representation of the drug-protein target asso-
ciation prediction method (Section V-B). Area Under the ROC Curve
(AUC) over the maximum path length of the associations included in
the R′

23 matrix. Each curve represents a different α parameter value,
as reported in the figure legend; each point is the mean value over
10 repetitions of the NMTF method executed considering increasingly
longer path lengths, and the error bars show the standard deviation
across repetitions.

unknown as drug targets. However, the NMTF method applied after
shortest-path enhancement of the R23 matrix (i.e., considering the
R′23 matrix instead) is able to overcome this issue. Figure 3 shows
the AUC ROC scores for the drug-protein target associations retrieved
with the NMTF method after shortest-path enhancement, computed
only for the random proteins whose all drug associations were
removed and for the related drugs. In a real case scenario, this method
may lead to discover novel drug-protein target interactions, where
such targets can be also proteins that were never considered as drug
targets.

Each point in Figure 3 represents the mean value of the per-
formance over 10 repetitions, in which the maximum path length
considered in R′23 is equal to the point x-axis value. In the x-axis
the value 1 is missing since binary associations (i.e., those with
path length equal to 1) were removed for the validation process.
Figure 3 shows that an α coefficient equal to 0.2 gives one of the
best performances for path lengths greater than 3, reaching a mean
AUC ROC value equal to 0.845, which corresponds to a remarkably
high performance. Also, curves corresponding to α coefficients equal
to 0.3 and 0.4 reach similar mean values of performances, i.e., 0.845
and 0.844 respectively; yet, their performance is not so good for
the validation reported in Figure 2. Instead, the NMTF method with
shortest-path enhancement and an α coefficient equal to 0.1 has the
worst performance over path lengths, conversely to what occurs in
the validation results illustrated in Figure 2; this makes such value not
a good choice for the α coefficient. Together Figures 2 and 3 clearly
show that shortest paths with path length greater than 3 do not carry
useful information to improve the performance of our method.

C. Evaluation of Data Integration Improvement
Similarly to what done in [9], we assessed the benefits of the

integration of data from heterogeneous sources, with a particular
focus on the improvement brought by the integration of protein
targets by the novel shortest-path method. We evaluated how the
APS of the therapeutic class-drug annotation predictions (in the R12

matrix) varies when incrementally adding new layers in the multi-
partite network. We obtained incremental APS values equal to 0.788,
0.792 and 0.804 when considering the 〈R12, R23〉, 〈R12, R23, R34〉
and 〈R12, R23, R34, R25〉 networks, respectively, thus proving the
benefits of integrating different heterogeneous datasets. Those APS
values further increase to 0.808, 0.808 and 0.817 when the drug-
protein target matrix R23 is enriched by using the shortest-path
method with the optimal parameters α = 0.2 and 1 ≤ path length ≤
3, demonstrating the gain of the shortest-path enhancement.

D. Comparative Study

We compared our drug repurposing results with those of two
state-of-the-art methods proposed in [14] and [25]. Luo et al. [25]
developed a network-based method, called DTINet, which integrates
heterogeneous data sources for drug repositioning. DTINet uses a
feature extraction method that extracts low-dimensional vector repre-
sentations from the topology of the nodes in the integrated network.
Then, it predicts and computes drug-protein target interactions and
drug similarity measures through these representations. Li et al. [14]
instead presented an approach based on drug similarity (DS), where a
new indication for a drug is identified by its relations with other drugs.
For this aim they compute a linear combination of chemical structure
similarity and target similarity; the former one is measured by the
Tanimoto coefficient of the 2D chemical fingerprints, while the latter
one is measured using the drug-protein bipartite-graph considering
common drug targets and their interaction information.

The predicted drug similarities from DTINet are used to infer new
therapeutic indications for drugs by means of their interactions in the
integrated network, i.e., if two drugs are similar according to DTINet,
they can share their uses. An equal hypothesis is done on the drug
similarities computed with the DS method. For the comparative study,
we limited the analysis to the 607 drugs whose data can be retrieve
for both approaches. We then computed the APS score and AUC ROC
values for the NMTF, DTINet, and DS methods. As it can be seen
in Figure 4, our method achieved higher APS score and AUC ROC
values (0.863 and 0.931, respectively) than using DTINet (0.525 and
0.839, respectively), or DS (0.511 and 0.812, respectively) methods.

NMTF DTINet DS0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
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AUC

Fig. 4. Comparison of APS scores and AUC ROC values for NMTF,
DTINet [25] and Drug Similarity (DS) [14] methods. The APS scores are
equal to 0.863, 0.525 and 0.511, respectively. The AUC ROC values are
equal to 0.931, 0.839 and 0.812, respectively. The scores are computed
considering the 670 drugs evaluated in both [14] and [25].
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VI. LITERATURE VALIDATION

Taking advantage of the shortest-path enhancement and of the
good performances it provides as demonstrated in Section V, in what
follow we extend the number of proteins in the modeled network, by
including also those proteins that are not target of any drug according
to the last version of the DrugBank database. In the network, the
newly added proteins do not have binary associations with drugs, but
their associations derive from shortest path lengths greater than 1.
After applying our innovative computational framework to the new
extended network, we manually validate the top new associations
predicted for the R12, R23 and R25 matrix, respectively. Towards
this aim, we extract the high-score ”False Positives” for each matrix
and we validate them based on the associated literature findings.
The hallmark of our method is to simultaneously get drug-centric
predictions from the therapeutic class, the protein target, and the
disease perspectives. The obtained results are following discussed.

A. Therapeutic Class Predictions
After applying the NMTF method with the shortest-path enhance-

ment, we reconstruct the R̂12 matrix by multiplying the G1, G2

and S12 computed factors, and we normalize the values of R̂12 to
have scores ranging from 0 to 1. Some of the obtained high-score
therapeutic class predictions (”False Positives”) are reported in Table I
(prediction score greater than 0.85).

TABLE I
TOP THERAPEUTIC CLASS PREDICTIONS

Therapeutic Class Drug Name Drug ID Score
Immunologic Factor Emapalumab DB14724 0.930
Cardiovascular Agent Cacodylic Acid DB02994 0.928
Immunoprotein Lorlatinib DB12130 0.926
Neurotransmitter Agent Tropicamide DB00809 0.881
Neurotransmitter Agent Homatropine DB11181 0.853

Emapalumab is an interferon-gamma blocking antibody. It is clas-
sified as a monoclonal antibody used for the treatment of patients with
primary hemophagocytic lymphohistiocytosis (HLH) [37]. According
to the experimental assays in [41], it affects the immune system
by controlling the immune hyperactivation associated with the HLH
disease. Thus, our algorithm positively associates this drug to the
therapeutic class known as Immunologic Factors (with a 0.930 score),
whereas DrugBank fails to report it.

Cacodylic acid is an organoarsenic compound containing arsenic
and organic groups. It has been experimentally shown that Cacodylic
acid can induce procoagulant activity and apoptosis in specific blood
cells that play key roles in the development of various cardiovascular
diseases [42], [43]. Our method successfully labels Cacodylic acid
as a Cardiovascular Agent with a 0.928 score.

Lorlatinib is a small molecule used for the treatment of Non-small
Cell Lung Cancer. It acts as an antineoplastic and immunomodulat-
ing agent by inhibiting the tyrosine kinase. Although this drug is
classified as a small molecule, from the therapeutic class perspective
Lorlatinib functions as an Immunoprotein [44], as our method predicts
(prediction score equal to 0.926).

Tropicamide is an antimuscarinic drug that produces short-term
dilation of the pupil. Tropicamide acts as a Neurotransmitter Agent;
indeed it is a muscarinic receptor antagonist that blocks the activity
of the muscarinic acetylcholine receptor (i.e., the ACh neurotransmit-
ter) [45]. This validates the association that our algorithm predicts for
Tropicamide with a 0.881 score. Also Homatropine is know to act as
an antagonist of muscarinic acetylcholine receptors [46], confirming
its classification as Neurotransmitter Agent provided by our NMTF-
based method (with a 0.853 score).

B. New Drug-Target Interactions

The shortest-path enhancement method allowed us to include much
more proteins into the considered network, i.e., proteins that were
never considered as targets of drugs. This makes the predicted new
drug-protein target interactions even of greater interest. Table II
reports some of the highest-score drug-target predictions of our
enhanced NMTF method, computed by reconstructing the R̂′23 matrix
and normalizing the scores of its predicted links. They include
Adinazolam and Clotiazepam drug predictions.

TABLE II
TOP-SCORED PREDICTED NEW DRUG-TARGET INTERACTIONS

Uniprot Name Uniprot ID Drug Name Drug ID Score
GBRA4 P48169 Clotiazepam DB01559 0.782
GBRA6 Q16445 Clotiazepam DB01559 0.779
GBRA4 P48169 Adinazolam DB00546 0.760
GBRA6 Q16445 Adinazolam DB00546 0.757
GABRQ Q9UN88 Clotiazepam DB01559 0.635

According to our method, the Adinazolam drug interacts with the
GBRA4 protein. Adinazolam derives from benzodiazepine, a class
of psychoactive drugs; it has anxiolytic, anticonvulsant, sedative, and
antidepressant properties [47], [48]. GBRA4 is the alpha-4 subunit of
the GABA neurotransmitter. Benzodiazepines and GABA-A receptor
are known to bind for the modulation of the chloride channel in cell
membranes [49]. This provides a very strong biomolecular support to
our predicted Adinazolam-GBRA4 interaction (0.760 score), as well
as to the computationally predicted Adinazolam-GBRA6 interaction
(0.757 score), where GBRA6 is the alpha-6 subunit of the GABA
neurotransmitter.

Clotiazepam is another benzodiazepine derivative, which our
method predicts to interact with the GBRA4, GBRA6 and GABRQ
proteins (with score 0.782, 0.779 and 0.635, respectively). Each of
these proteins is involved with the chloride channel activity; they all
are subunits of the GABA-A receptor [49], which strongly supports
their interaction with Clotiazepam as a mechanism to modulate the
chloride channel activity.

Some of our computationally predicted drug-target interactions are
also confirmed by the experimental results in [50]; in particular,
Table III reports the ones regarding Simvastatin, Ketoconazole, Di-
clofenac and Itraconazole. These drugs were experimentally validated
by Cheng et al. [50] for their possible interactions with two estrogen
receptors, namely ERα and ERβ. In vitro assays confirmed that
Simvastatin, Ketoconazole, Diclofenac and Itraconazole act as novel
estrogen receptor ligands, which confirms our predictions reported in
Table III.

TABLE III
EXPERIMENTALLY-VALIDATED NEW DRUG-TARGET INTERACTIONS

Protein Name Uniprot ID Drug Name Drug ID Score
ERβ Q92731 Simvastatin DB00641 0.727
ERβ Q92731 Ketoconazole DB01026 0.722
ERα P03372 Diclofenac DB00586 0.688
ERβ Q92731 Diclofenac DB00586 0.572
ERα P03372 Itraconazole DB01167 0.385
ERβ Q92731 Itraconazole DB01167 0.316

Furthermore, we systematically tested our drug-protein target pre-
dictions against the available literature, automatically retrieving sci-
entific publications from PubMed2. For each predicted drug-protein
target pair, we evaluated if at least one paper mentioning it exists.
We tested the 50,000 top scored predictions and we found that the

2https://www.ncbi.nlm.nih.gov/pubmed/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JBHI.2020.2991763

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

probability for a predicted drug-protein target pair to be mentioned
in a scientific paper decreases with the prediction score given by
our method. In particular, 4.9% of the top 5,000 predicted pairs are
mentioned in a paper, while this percentage decreases to only 3.6%
for the bottom 5,000 considered predictions.

C. Drug-Disease Novel Associations

To complete our drug-centric evaluation we consider the recon-
structed R̂25 matrix, which gives novel drug-disease associations.
In particular, we focus on the Itraconazole, Diclofenac, Simvastatin,
and Ketoconazole drugs, which respectively have a total of 13,
22, 20 and 19 predicted disease associations with a score greater
than 0.3. They include associations with specific types of cancer, as
reported in Table IV, as well as with several infectious diseases.
Itraconazole and Ketoconazole are antifungal medications, indeed
used to treat fungal infections; Simvastatin is a lipid-lowering drug
and Diclofenac is a non-steroidal anti-inflammatory compound [37].
They all show particularly interesting drug-disease associations. As a
confirmation of their cancer association, in [50] and [51] Simvastatin
and Ketoconazole showed anti-proliferative activities on breast cancer
cell experiments, suggesting that these antifungal agents may have
therapeutic effects also on breast cancer. Itraconazole and Diclofenac,
instead, have already been considered as anti-cancer agents in recent
case studies [52], [53].

TABLE IV
SOME DRUG-DISEASE NOVEL ASSOCIATIONS

Type of Disease Drug Name Drug ID Score
Breast Cancer Simvastatin DB00641 0.984
Breast Cancer Ketoconazole DB01026 0.969
Prostate Cancer Simvastatin DB00641 0.555
Breast Cancer Itraconazole DB01167 0.541
Colorectal Cancer Diclofenac DB00586 0.447
Renal Cell Carcinoma Simvastatin DB00641 0.445
Prostate Cancer Ketoconazole DB01026 0.424
Ovarian Cancer Ketoconazole DB01026 0.327
Head and Neck Cancer Ketoconazole DB01026 0.320

Furthermore, as in [54] we compared our drug-disease predicted
associations with available information about clinical trials3. Indeed,
181 of our 1,000 top predictions (18.1%) have at least one ongoing
clinical trial reported, while on average only 7.1% of all predicted
drug-disease pairs are associated with an ongoing trial. Additionally,
we considered the scores that our method assigns to the drug-disease
pairs and tested the difference between the scores of those pairs
confirmed by a clinical trial and the others. Confirmed pairs have
on average a higher associated score (0.0586) compared to the non-
confirmed ones (0.0457); such difference is statistically significant
accordingly to the t-test for the means (p-value = 5.0 · 10−34). This
confirms the validity of our top scoring drug-disease predictions.

VII. CONCLUSIONS

Computational drug repurposing has several advantages compared
to the traditional drug discovery, including time-saving suggestions
for the experimental repositioning of known drugs and cost-cutting
opportunities for the clinical validations. The most promising ap-
proaches for computational drug repurposing are the ones that inte-
grate heterogeneous information from different data types.

In our work, we developed a NMTF-based approach that inte-
grates several data types by representing them as a multi-partite
graph and predicts novel drug-centric annotations by graph matrix

3at https://www.clinicaltrials.gov/

factorization. We also implemented the shortest-path enhancement
method that exponentially increases the number of drug-protein target
predictions, enabling the evaluation of unknown protein targets. To
validate our method, we used two techniques based on therapeu-
tic class and protein target predictions, respectively. The tests we
performed demonstrated the validity of our method; the shortest-
path enhanced NMTF-based approach that we propose scores 0.82
of APS for drug-to-therapeutic class predictions and 0.85 of AUC
ROC for drug-to-target predictions. Such performances prove that
our method is valuable for the repurposing of approved drugs, as
well as for the prediction of novel protein targets for drugs. For
both cases, in Figures 2 and 3 we reported our method performances
while including increasing information (i.e., increasing shortest path
lengths) and using different values of the α parameter (as defined
in Section III-C). Both Figures show that the best choice for the
α parameter is 0.2. Indeed, the curves corresponding to α = 0.2
have the best performance for the therapeutic class-drug validation
(Section V-A) and maintain one of the best scores for the drug-
protein target validation (Section V-B). Moreover, the joint use of
the NMTF and the shortest-path enhancement methods has shown
better performances than the NMTF method applied only to binary
association matrices.

We also validated some of our top-scored predictions with liter-
ature findings, demonstrating that our approach successfully anno-
tates novel drug-centric predictions. We also reported experimentally
validated examples of drug-target and drug-disease associations to
confirm the validity and relevance of our predictions, and to prove
that our results may lead to interesting repurposing opportunities.
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