
GMQL - Introduction to the language
(with Federated extensions)

Introduction 1

A. GENOMIC DATA MODEL (GDM) 1

B. BASIC OPERATORS 1

Foreword: Syntactic conventions and other observations 2

1) SELECT 3

2) MATERIALIZE 7

3) PROJECT 8

4) EXTEND 13

5) ORDER 14

6) GROUP 17

7) MERGE 21

8) UNION 22

9) DIFFERENCE 23

10) MAP 25

11) JOIN 28

12) COVER 42

Cover variants 45

C. FEDERATED FEATURES 47

1

Introduction
This document extends the “GMQL – Introduction to the language” document, available at
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/doc/GMQL_introd
uction_to_the_language.pdf . In particular, it adds the description of the directives and
operator parameters that allow the user to run GMQL queries within a federated environment.
After a short presentation of the Genomic Data Model adopted by GMQL (Section A), the
document contains a description of the basic operators of the language (Section B). After
listing syntactic conventions, Section B reports the list of all operators in GMQL along with
their parameters, syntax and general usage. For each operator also a list of basic examples
is provided, showcasing how to combine different parameters and describing the associated
semantics. Finally, Section C, describes how to modify a query in order to make it run within
a federation of GMQL instances, by introducing the new directives and operator parameters.

A. GENOMIC DATA MODEL (GDM)
GMQL is based on a representation of the genomic information known as Genomic Data
Model (GDM). Datasets are composed of samples, which in turn contain two kinds of data:

1. Genomic region values (or simply regions), aligned w.r.t. a given reference, with
specific left-right ends within a chromosome:

 Regions can store different information regarding the “spot” they mark in a particular
sample, such as region length or statistical significance. Regions of the model describe
processed data, e.g., mutations, expression or bindings; they have a schema, with 5
common attributes (id, chr, left, right, strand) including the id of the region and the
region coordinates, along the aligned reference genome, and then arbitrary typed
attributes. This provides interoperability across a plethora of genomic data formats;

2. Metadata, storing all the knowledge about the particular sample, are arbitrary attribute-
value pairs, independent from any standardization attempt; they trace the data
provenance, including biological and clinical aspects.

B. BASIC OPERATORS
After illustrating GMQL syntactic conventions, this section reports the list of all operators in
GMQL along with their parameters, syntax and general usage. Each operator also contains a
list of basic examples, showcasing how to combine different parameters and describing the
associated semantics.
Within this document, by convention, operator parameters and conditions which are
mandatory are written in bold.

http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/doc/GMQL_introduction_to_the_language.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/doc/GMQL_introduction_to_the_language.pdf

2

Foreword: Syntactic conventions and other observations

● Region and metadata attribute names, as well as dataset names, are case
sensitive: for instance, pvalue != pValue != PVALUE. GMQL keywords, however, are
not case sensitive: e.g., UPSTREAM == upstream == UpStReAm.

● Assigning different values to an existing variable (i.e., dataset) name is not allowed by
the language; a new dataset must be created instead.

● Logical predicates on region or metadata consist of concatenations of atomic
predicates by means of the OR, AND and NOT logical operators. Atomic predicates
have the following general form: attribute_name (==, or >, or <, or >=, or <=) value. If
the value is a numeric literal, it is automatically parsed to the related numeric format.
Standard numeric ordering is used in order to evaluate >, <; otherwise, if the attribute
value is a string literal, a lexicographic order is used.

● The following are all the aggregate functions available for GMQL operators:
○ COUNT (requires no argument, counts number of regions, and is computed by

default in the MAP operation). Note that this is not available in the GROUP
operator, where instead the COUNTSAMP aggregate function is available (it
requires no argument, counts number of samples, and is applicable only to
create a new metadata with such count);

○ BAG and BAGD (applicable to attributes of any type, create comma-separated
strings of attribute values, distinct in the case of BAGD);

○ SUM, AVG (average), MIN, MAX, MEDIAN, STD (standard deviation)
(applicable to attributes of numeric types).

● In all operators that allow for metadata comparisons (i.e., those that include groupby
or joinby options), the language recognizes dot-separated suffix substrings of
metadata (or region) attribute names (for instance, ‘age’ in ‘DS1.age’). So, if a
metadata selection or meta-join is made, the language searches for all metadata which
contain the queried attribute name substring with the queried attribute value, e.g., the
query age == ‘45’ selects samples with metadata ‘DS1.age 45’ or ‘P1.DS1.age 45’.

● In a metajoin condition (i.e., for all operators that include such condition: SELECT
has semijoin, DIFFERENCE, MAP, and JOIN have joinby, GROUP, MERGE, and
COVER have groupby), different matching options can be used:

○ metadata_attribute_name: it matches all attributes that are equal to OR end
with the dot-separated suffix specified name (regardless additional
metadata_attribute_name dot-separated prefixes not explicitly specified);

○ EXACT(metadata_attribute_name): it matches all attributes that are equal to
the specified name (without any prefixes);

○ FULL(metadata_attribute_name): it matches two attributes if they end with the
specified name AND their full names are equal;
For instance, if we consider the following attributes:

1. pref1.pref2.att
2. pref1.att
3. att
4. pref1.att

Then:
• att matches all of the above attributes;
• EXACT(att) matches only attribute 3. (i.e., att);
• FULL(att) matches attributes 2. and 4. (i.e., pref1.att).

3

● In GMQL, query comments can be introduced, starting with the character #; all parts
after the # along the same line are considered comments.

● Note: GMQL queries and scripts always require at least one SELECT and one

MATERIALIZE statement in order to compile, therefore to execute.
● Note: the only operator in the current release which allows to edit region coordinates

as region attributes is the PROJECT operator.
● Note: it is possible to use the PROJECT command to copy region coordinates into

separate region attributes and employ them as any other attribute (including use in
aggregations).

● When evaluating the effect of every GMQL operator, all the following six

characteristics of the output dataset must be considered:
1. Number of samples (called dataset cardinality), based on input dataset(s)

cardinality;
2. Number of sample regions;
3. Dataset schema, i.e., region attributes;
4. Samples region coordinates, based on input regions (also when these

overlap in a single sample);
5. Samples region attribute values;
6. Samples metadata.

1) SELECT
The SELECT operation creates a new dataset from an existing one (considering also an
additional dataset if a semijoin clause is specified, see below) by extracting a subset of
samples and/or regions from the input dataset; each sample in the output dataset has the
same region attributes, values, and metadata as in the input dataset.
The general syntax for SELECT is:
DSout = SELECT(pm ; region: pr ; semijoin: psj(DSext)) DSin ;
where:

● DSin is the input dataset;
● DSout is the resulting output dataset;
● pm is a logical predicate on metadata;
● pr is a logical predicate on genomic regions within each sample in DSin;
● psj(DSext) is a semi-join predicate, with form: attr1, attr2, ..., attrN IN (or NOT IN) DSext,

where DSext is another dataset previously created.

This operation (hereafter called selection) can therefore be based on three kinds of criteria, of
which at least one must be specified:

1. Metadata predicates: selection based on the existence and values of certain metadata
attributes in each sample. For instance, antibody_target == ‘POLR2A’ extracts only
samples whose metadata contain the attribute antibody_target with associated value
POLR2A. In predicates, attribute-value conditions can be composed using logical
predicates AND, OR and NOT; in the latter case attribute-value conditions must be
within parentheses, e.g., NOT(antibody_target == ‘POLR2A’);

4

2. Region predicates: selection based on the characteristics of the genomic regions of
each sample. For instance, strand == + extracts only samples that include regions
with strand attribute (defined in the dataset schema) equal to + and only those regions
whose strand is equal to +. Notice that the use of metadata attributes in predicates on
region attributes is enabled. For instance, a condition such as AccIndex ==
META(maxCount) can be used, where AccIndex is a region attribute and maxCount is
a metadata attribute;

3. Semi-join clauses: selection based on the existence of certain metadata attributes and
the matching of their values with those associated with at least one sample in an
external dataset DSext. In particular, a semi-join predicate in the form a1, a2,. .., aN IN
DSext is true for a given sample sk

in of DSin if and only if there exists at least one sample
in dataset DSext with metadata attributes named a1, a2,. .., aN and these attributes of
DSext have at least one value in common with the same attributes a1, a2,. .., aN in sk

in.
For instance, semijoin: cell, antibody_taget IN CTCF_RAW extracts only those
samples of DSin that have both cell and antibody_taget values found in at least one
sample of CTCF_RAW. NOT IN condition is evaluated accordingly.

Clearly, a user might define complex SELECT statements with more than one selection type
at the same time; if this happens, it is intended that clauses of heterogeneous type are
connected by an AND condition.

Note 1: SELECT() DSin selects all samples in dataset DSin and copies them in the output.

Note 2: The wildcard character ‘*’ can be used in a SELECT statement to indicate all values
of an attribute, e.g., SELECT(NOT(attribute_name == ‘*’)) DSin selects all samples in dataset
DSin which do not include in their metadata the attribute named attribute_name (with any
value) and copies such samples in the output.

Note 3: As mentioned in the Foreword section, in semijoin option (which is one of the possible
metajoin options of GMQL) different alternatives are available with respect to dot-separated
prefixes in case present for metadata attribute names:

• metadata_attribute_name;
• EXACT(metadata_attribute_name);
• FULL(metadata_attribute_name).

Please refer to the Foreword section of this document for further details.

Example 1:
DATA = SELECT(region: (chr == chr1 OR chr == chr2) AND

NOT(strand == + OR strand == -) AND start >= 500000
AND stop <= 600000) HG19_ENCODE_NARROW;

This GMQL statement restricts the set of selected regions in each sample of the input
HG19_ENCODE_NARROW dataset to the ones belonging to either chromosome chr1 or
chromosome chr2 (note that, since chr is a region coordinate attribute, its value must be
specified without quotes). The syntax NOT(strand == + OR strand == -) can be used to include
regions whose strand is unknown, i.e., neither positive nor negative (i.e., unstranded regions).
Note that, when specifying particular values for the attribute strand, quotes should not be used.
The last two conditions restrict the selected regions to the ones that extend along the genomic
interval [500000, 600000].

5

If no regions of a samples are selected, the sample is not included in the output RES dataset.

Example 2:
OUTPUT_DATASET = SELECT(Patient_age < 70) INPUT_DATASET;

This GMQL query selects from INPUT_DATASET data samples of patients younger than 70
years old, based on filtering on sample metadata attribute Patient_age (see following figure).

INPUT_DATASET:

OUTPUT_DATASET:

Example 3:
OUTPUT_DATASET = SELECT(region: score > 0.5) INPUT_DATASET;

This query selects, in all samples in INPUT_DATASET, those regions which have a value
greater than 0.5 for their attribute score. The resulting OUTPUT_DATASET contains a copy
of the samples of INPUT-DATASET, with the same metadata, but with only the remaining
regions. When, for a specific sample, no regions that satisfy the condition are selected, that
sample is not included in the output.

6

OUTPUT_DATASET:

Example 4:
DATA = SELECT(cell == ‘Urothelia’; region: left > 100000) HG19_ENCODE_NARROW;

This GMQL statement creates a new output dataset DATA which only includes samples from
the input dataset HG19_ENCODE_NARROW that present the metadata attribute-value pair
(cell Urothelia). Moreover, in each sample, only the regions whose left coordinate value is
greater than 100000 are included in the output dataset DATA. If no regions of a sample are
selected, that sample is not included in the output.

Example 5:
DATA = SELECT(region: NOT(variant_type == 'SNP')) HG19_TCGA_dnaseq;

This statement produces a dataset that contains all the samples of the input dataset (with all
their metadata) which have at least one region which is not of variant_type ‘SNP’. Inside each
sample the regions that, for the region attribute variant_type, have a value different from “SNP”
(Single-Nucleotide Polymorphism) are preserved; the regions that have variant_type ‘SNP’,
instead, are excluded.
Note that in case all regions belonging to a sample have been excluded through the NOT
condition, that empty sample is not produced in the output dataset.

Example 6:
DATA = SELECT(manually_curated__tissue_status == "tumoral" AND

(manually_curated__tumor_tag == "gbm" OR
manually_curated__tumor_tag == "brca")) HG19_TCGA_dnaseq;

This statement shows how it is possible to combine multiple conditions on the metadata
attributes by using the Boolean operators AND and OR. In this particular case, the output
dataset contains all the samples that have manually_curated__tissue_status = "tumoral" and
manually_curated__tumor_tag = "gbm", and also all the samples that have
manually_curated__tissue_status = "tumoral" and manually_curated__tumor_tag = "brca".
Notice that gbm corresponds to data concerning patients with Glioblastoma multiforme,
instead brca refers to Breast Invasive Carcinoma.

7

Example 7:
JUN_POLR2A_TF = SELECT(antibody_target == ‘JUN’; region: pvalue < 0.01;
 semijoin: cell NOT IN POLR2A_TF) HG19_ENCODE_NARROW;

This statement creates a new dataset called JUN_POLR2A_TF by selecting those samples
and their regions from the existing HG19_ENCODE_NARROW dataset (a collection of
narrowPeak data from the ENCODE repository) such that:

A. each output sample has a metadata attribute called antibody_target with value JUN;
B. each output sample also has not a metadata attribute called cell that has the same

value of at least one of the values that a metadata attribute equally called cell has in
at least one sample of the POLR2A_TF dataset;

C. for each sample satisfying A and B, only its regions that have a region attribute called
pvalue with the associated value less than 0.01 are conserved in output; only samples
with at least one conserved region are selected in the output.

Example 8:
DATA = SELECT(region: score > META(avg_score)) HG19_ENCODE_NARROW;

This statement allows to select, in all input sample, all those regions for which the region
attribute score has a value which is greater than the metadata attribute value avg_score in
their sample.

2) MATERIALIZE
The MATERIALIZE operation saves the content of a dataset in a file and registers the saved
dataset in the system to make it usable in other GMQL queries. The name of the file must be
specified and be different from the name of any other file saved in the same query.
The general syntax for MATERIALIZE is the following:
MATERIALIZE DS INTO file-name;
where:

● DS is the dataset (temporary and local to the query) to be saved on the file system;
● file-name is the required name of the file into which the dataset DS must be saved.

Note 1: In a GMQL script or query a MATERIALIZE statement is always necessary in order to
compile/execute it. Only in this way a result of the computation becomes visible and available
for download.

Note 2: The actual GMQL implementation materializes DS into a file with a name in the form
[queryname]_[timestamp]_filename.
All datasets defined in a GMQL query are, by default, temporary; to store and access the
content of any dataset generated during a GMQL query such dataset must be materialized.
Any dataset can be materialized; however, the operation is time expensive, so for better
performance it is suggested to materialize only relevant datasets, such as the final output.

8

Example:
MATERIALIZE HM_TFS INTO res;

This GMQL statement saves the content of the temporary HM_TFS dataset into a file named
[queryname]_[timestamp]_res.

3) PROJECT
The PROJECT operator creates, from an existing dataset, a new dataset with all the samples
(with their regions and region values) in the input one, but keeping for each sample in the input
dataset only those metadata and/or region attributes expressed in the operator parameter list.
Region coordinates and values of the remaining metadata and region attributes remain equal
to those in the input dataset. Differently from the SELECT operator, PROJECT allows to:

● Remove existing metadata and/or region attributes from a dataset;
● Create new metadata and/or region attributes to be added to the result.

The general syntax for PROJECT is:
DSout = PROJECT(RA1, …, RAm ;

metadata: MA1, ..., MAn ;
region_update: NR1 AS g1, …, NRh AS gh;
metadata_update: NM1 AS f1, ..., NMk AS fk) DSin ;

where:
● DSin is the input dataset;
● DSout is the resulting output dataset;
● RA1, …, RAm are the conserved genomic region attributes;
● MA1, ..., MAn; are the conserved metadata attributes;
● NR1, ..., NRh; are new genomic region attributes generated using functions g1, ..., gh on

existing region or metadata attributes or constant;
● NM1, ..., NMk; are new metadata attributes generated using functions f1, ..., fk on

existing metadata attributes or constant.

Note 1: The default form of this operator has no parameter. PROJECT() DSin applies the
projection only on the regions. It removes all the region attributes which are not coordinates
(i.e., only chr, start, stop, and strand are kept).

Note 2: It is possible to use the special keywords ALLBUT to retain all existing genomic region
or metadata attributes apart from a specified set.

Note 3: If the names of existing region or metadata attributes are used in place of new region
names, the operation updates such region attributes to the new specified values.
To specify the new values, the following options are available:
- All basic mathematical operations (+, -, *, /), including usage of parenthesis;
- The square root mathematical function (i.e., SQRT(attribute_name));
- Whenever possible, the metadata values are cast to numeric. If the cast fails (i.e., the

metadata value is a not castable string) the resulting metadata should contain “GMQL
Casting Exception: Could not parse”.

9

Note 4: To express which set of region or metadata attributes should be considered, the
wildcard "?" can be used in the RAi place of the syntax (at most one per attribute). For instance,
the user can write statements such as:
OUTPUT_DATASET = PROJECT(?.score) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(?.score, ?.name) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(DS.?) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(my.?.score) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(S.?, ?.att, S.?.att) INPUT_DATASET;
Note that PROJECT(?.S.?) is incorrect.

Note 5: It is possible to create a new textual region or metadata attribute with a defined value,
e.g., OUTPUT_DATASET = PROJECT(region_update: label AS “class1”) INPUT_DATASET;.

Note 6: It is possible to define a new numeric region attribute with "null" value. The syntax for
creating a new attribute with null value is attribute_name AS NULL(TYPE), where type may
be INTEGER or DOUBLE. As an example, we can write statements such as
OUTPUT_DATASET = PROJECT(region_update: signal AS NULL(INTEGER), pvalue AS
NULL(DOUBLE)) INPUT_DATASET;.
This feature is useful to extend the schema of a dataset before its composition, through the
UNION() operator, with another dataset, so that all attributes of the two datasets are included
in the UNION() output dataset (which is defined to have the same schema of the UNION() left
input dataset). Notice that a null value for the type STRING does not exist, which is instead
defined as the empty string (i.e., “”).

Note 7: It is possible to define a new region attribute with the value of a metadata attribute
using the syntax region_attribute_name AS META(metadata_attribute, type), e.g.,
OUTPUT_DATASET = PROJECT(region_update: signal AS META(avg_signal, DOUBLE))
INPUT_DATASET;
Notice that the type of the new region attribute has to be specified; it can be INTEGER or
DOUBLE if the metadata attribute has numeric values, STRING otherwise.

Example 1:
OUTPUT_DATASET = PROJECT(region_update: length AS right - left) INPUT_DATASET;

This GMQL statement creates a new dataset called OUTPUT_DATASET by preserving all
region attributes and creating a new region attribute called length with value obtained by
subtracting the left coordinate value of a region from its right coordinate value. This simple
operation computes the length of the region in terms of number of bases. Notice that the length
is always positive regardless of the strand of the region, because right and left coordinates
already take into account the direction. Also notice that, in case the INPUT_DATASET is a
dataset containing single base regions (e.g., TSS), all the new length attributes would turn out
to be unitary.

10

Example 2:
OUTPUT_DATASET = PROJECT(region_update: new_right AS right) INPUT_DATASET;

This GMQL statement creates a new dataset called OUTPUT_DATASET by preserving all
region attributes and creating a new region attribute called new_right which contains a copy
of the value of the coordinate attribute right. This allows to subsequently aggregate regions by
their right coordinate value using the new_right attribute.

Example 3:
RES = PROJECT(region_update: start AS start - 2000, stop AS start + 1000) GENES;

This PROJECT statement considers an input dataset of genes and generates in output a
dataset RES with the gene promoter regions. To define a promotorial region, it is necessary
to start from a transcription start site (TSS) (a single base of DNA at the beginning of the gene
transcription region, conventionally taken as a starting point for the gene transcription) and
extend it upstream/downstream by a number of given bases. As an example, here, the region
coordinate attributes left and right are redefined by shifting the upstream one of them 2 kbp
upstream and the downstream one 1 kbp downstream from the original upstream one, by
using the start/stop option that takes the region strand into account.

Example 4:
OUTPUT_DATASET = PROJECT(metadata: ALLBUT cell, cell_sex) INPUT_DATASET;

This example shows how to use the ALLBUT option to exclude multiple metadata attributes,
retaining all the others not specified. It creates a new dataset OUTPUT_DATASET by
preserving all region attributes and metadata attributes, apart from the cell and cell_sex ones,
which are excluded from the metadata attributes of all the samples.

11

Example 5:
CTCF_NORM_SCORE = PROJECT(ALLBUT score, value; region_update: new_score AS

(score / 1000.0) + 100; metadata_update: normalized AS 1) CTCF_RAW;

This GMQL statement creates a new dataset called CTCF_NORM_SCORE by preserving all
region attributes apart from score and value, and creating a new region attribute called
new_score by dividing the existing score value of each region by 1000.0 and incrementing it
by 100.
It also generates, for each sample of the new dataset, a new metadata attribute called
normalized with value 1, which can be used in future selections.

Example 6:
DS_out = PROJECT(variant_classification, variant_type;

metadata: manually_curated__tissue_status, manually_curated__tumor_tag) DS_in;

This statement produces an output dataset DS_out that contains the same samples as the
input dataset DS_in. Each output sample only preserves, as region attributes, the four basic
coordinates (chr, left, right, strand) and the specified region attributes variant_classification
and variant_type, and as metadata attributes only the specified ones, i.e.,
manually_curated__tissue_status and manually_curated__tumor_tag.

Example 7:
DS_out1 = PROJECT(metadata_update: age AS age + 10) DS_in;
DS_out2 = PROJECT(metadata_update: age_plus AS age + 100) DS_in;

The first statement produces an output dataset DS_out1 that contains the same samples as
the input dataset DS_in. Each output sample contains the same region attributes as the
samples in DS_in. As metadata attributes, each sample contains the same ones as in DS_in
samples with the exception of the attribute age, which is incremented by 10.
The second statement has the same effect, but instead of substituting the value of the age
attribute, it adds the age_plus attribute, which corresponds to the former age attribute
incremented by 100.

Example 8:
DS_out = PROJECT(region_update: qvalue AS NULL(DOUBLE),

peak AS NULL(INTEGER), other AS NULL(DOUBLE)) DS_in;

This example shows how to write a correct PROJECT statement which adds to all samples
of the input dataset DS_in the region attributes qvalue, peak and other of the specified type.
Those of these attributes that do not exist in the input dataset are added to the schema of
the DS_out dataset and initialized with a NULL value in all regions of all samples of the RES
dataset; those of these attributes that already exist in the input dataset are set to the
specified type (in case changing the original one) and their values are set to NULL in all
regions of all samples of the DS_out dataset.

12

Example 9:
DS_out = PROJECT(region_update: signalSq AS SQRT(signal);

 metadata_update: concSq AS SQRT(concentration)) DS_in;

This statement allows to build an output dataset DS_out such that all the samples from the
input dataset DS_in are conserved, as well as their region attributes (and their values) and
their metadata attributes (and their values). The new region attribute signalSq is added to the
output schema and to all the output samples with value correspondent to the mathematical
squared root of the pre-existing region attribute signal. In addition, the new metadata attribute
concSq is added to all output samples with value correspondent to the mathematical squared
root of the pre-existing metadata attribute concentration.

Example 10:
DS_out = PROJECT(region_update: sampleID AS META(ID, INTEGER),

score AS META(avg_score, DOUBLE), cell AS META(cell, STRING)) DS_in;

As Example 9, this statement allows to build an output dataset DS_out such that all the
samples from the input dataset DS_in are conserved, as well as their region attributes (and
their values) and their metadata attributes (and their values). The new region attributes
sampleID, score, and cell are added to the schema with the specified type (INTEGER,
DOUBLE and STRING, respectively); for all regions of a sample their value are equal to the
value of the indicated metadata attributes of the sample (respectively: ID, avg_score, and cell).

Example 11:
DS_out = PROJECT(region_update: chr1 AS chr, start1 AS start, stop1 AS stop,

 strand1 AS strand) DS_in;

This GMQL statement creates a new dataset called DS_out equal to the input dataset DS_in,
but in addition with the four new region attributes called chr1, start1, stop1, and strand1, which
contain respectively copies of the values of the coordinate attributes chr, start, stop and strand.
This allows to subsequently aggregate regions by their coordinate values using these new
attributes (note that aggregating to the original coordinate attributes is not allowed).

Example 12:
DS_out = PROJECT() DS_in;

This GMQL statement creates a new dataset DS_out equal to the input dataset DS_in, but
with the only difference that it keeps only the coordinates of every region, while all other region
attributes are removed from the DS_out dataset schema (and their values from all DS_out
dataset samples.

Example 13:
DS_out = PROJECT(metadata_update: newID AS (ID * 100), newInfo AS SQRT(Info)) DS_in;

This GMQL statement creates a new dataset DS_out equal to the input dataset DS_in. In
addition, in the metadata of DS_out samples, it adds two new metadata: newId, which yields
the value of the existing metadata attribute ID multiplied by a factor of 100 (the new value is
of type double), and newInfo, which instead contains the special value “GMQL Casting

13

Exception: Could not parse” since it is derived from a non-numerical field which cannot be
casted (in order to perform the numerical operation of computing its squared root).

4) EXTEND
For each sample in an input dataset, the EXTEND operator builds new metadata attributes,
assigns their values as the result of arithmetic and/or aggregate functions calculated on
sample region attributes, and adds them to the existing metadata attribute-value pairs of the
sample. Sample number and their genomic regions, with their attributes and values, remain
unchanged in the output dataset.
The general syntax for EXTEND is:
DSout = EXTEND(NM1 AS g1, ..., NMk AS gk) DSin;
where:

● DSin is the input dataset whose sample region attribute values are used to compute
the new sample metadata;

● DSout is the output dataset, a copy of the input dataset with additional metadata
calculated by EXTEND;

● NM1, ..., NMk; are new metadata attributes generated using arithmetic and/or
aggregate functions g1, ..., gk on the sample region attributes in DSin. In addition to the
usual aggregate functions, additional ones are available: q1(region_attribute),
q2(region_attribute), q3(region_attribute), which are respectively the first, second, and
third quartile of the values of the specified region_attribute.

Note: EXTEND does not have a default form (the statement EXTEND() DSin does not compile);
at least one parameter is required.

Example 1:
RES = EXTEND(Region_count AS COUNT()) EXP;

This GMQL statement counts the regions in each sample of the input dataset EXP and stores
their number as value of the new metadata Region_count attribute of the sample in the output
dataset RES.

RES:

14

Example 2:
RES = EXTEND(region_count AS COUNT(), min_pvalue AS MIN(pvalue)) EXP;

This GMQL statement copies all samples of the EXP dataset into the RES dataset, and then
calculates two new metadata attributes for each of them:

1. Region_count is the number of sample regions;
2. min_pvalue is the minimum pvalue of the sample regions.

RES sample regions are the same as the ones in EXP.

Example 3:
RES = EXTEND(all_scores AS BAG(score)) EXP;

This GMQL statement copies all samples of EXP into RES dataset, and then for each of them
adds another metadata attribute, all_scores, which is the aggregation comma-separated list
of all the values (or only the distinct ones in the case of using BAGD() instead of BAG()) that
the attribute score takes in the sample regions.

Example 4:
RES = EXTEND(quart1 AS q1(score)) EXP;

This statement copies all the samples of the EXP dataset into the RES dataset and, for each
of them, it adds an additional metadata attribute quart1, calculated as the first quartile value
of the sample’s score distribution.

5) ORDER
The ORDER operator is used to order either samples, sample regions, or both, in a dataset
according to a set of metadata and/or region attributes, and/or region coordinates. The number
of samples and their regions in the output dataset is as in the input dataset, as well as their
metadata and region attributes and values, but a new ordering metadata and/or region
attribute is added with the sample or region ordering value, respectively.
The general syntax of ORDER is the following:
DSout = ORDER(MA1 DESC, ..., MAn DESC;

meta_top: k OR meta_topp: k OR meta_topg: k;
region_order: RA1 DESC,...,RAm DESC;
region_top: k OR region_topp: k OR region_topg: k) DSin;

where:
● DSin is the input dataset;
● DSout is the output sorted dataset;
● MA1, ..., MAn; are the ordering metadata attributes;
● RA1, …, RAm are the ordering genomic region attributes;
● DESC is an optional parameter to be set after each ordering attribute that reverses the

ordering with respect to that attribute (default is ascending, becomes descending);

15

● k, where specified, is the number (or percentage, in the case of meta_topp and
region_topp) of samples (or regions) to be extracted from the ordered dataset (or from
each sample), starting from the top (with respect to the final ascending/descending
ordering).

Sorted samples, or sample regions, have a new attribute _order added to either metadata,
regions, or both of them; the value of _order reflects the result of the sorting.
The clauses meta_top: k and region_top: k extract the first k samples and regions,
respectively, according to the final ordering.
The clauses meta_topp: k and region_topp: k specify that the first k % elements (either
samples or regions) are extracted, out of the total number of elements, according to the final
ordering; the integer number of elements extracted is obtained by the floor integer
approximation of the k % elements (where floor(x) is the greatest integer that is less than or
equal to x, i.e., in case of 0.99 elements, 0 elements are extracted).
The clauses meta_topg: k and region_topg: k implicitly consider the ordering defined by first
grouping identical values of the first n − 1 ordering attributes, and then sorted by the remaining
attributes; they then select the first k samples, or regions, of each group.

Note 1: ORDER does not have a default form (the statement ORDER() DSin does not compile);
at least an ordering metadata attribute or a region_order clause must be specified.

Note 2: When the specified ordering metadata attributes are not present in any of the input
samples, an empty output is generated.

Example 1:
OUTPUT_DS = ORDER(Region_count DESC; meta_top: 2;) INPUT_DS;

This GMQL statement orders the samples in the INPUT_DS dataset according to their
Region_count metadata attribute and takes the two samples that have the highest count. As
shown in the following figure, the sample with attribute _order = 3 is excluded from the output.

OUTPUT_DS:

Example 2:
OUTPUT_DS = ORDER(Region_count; meta_top: 5;

region_order: Mutation_count DESC; region_top: 7) INPUT_DS;

16

This GMQL statement extracts the first 5 samples on the basis of their region counter (those
with the smaller Region_count) and then, for each of them, 7 regions on the basis of their
mutation counter (those with the higher Mutation_count).

Example 3:
OUTPUT_DS = ORDER(treatment_type, ID DESC; meta_top: 2) INPUT_DS;

This GMQL statement first sorts the samples in INPUT_DS dataset by ascending order with
respect to their metadata treatment_type, then it sorts them by descending order based on
the values of their metadata ID attribute (the new metadata attribute _order is added to all
samples). Finally, only the samples with _order = 1 or _order = 2 are extracted in the output
dataset OUTPUT_DS.

Example 4:
OUTPUT_DS = ORDER(target_label DESC; meta_topp: 30) INPUT_DS;

This GMQL statement first sorts the samples in INPUT_DS dataset by descending order with
respect to their target_label metadata attribute; then it extracts in the OUTPUT_DS dataset
the top 30% of the ordered samples.
By assuming that the INPUT_DS dataset contains 100 samples, the statement returns 30
samples of the INPUT_DS dataset that correspond to the first 30 ones according to the
descending order by their target_label metadata value (these samples are labelled with the
metadata attribute _order = 1, _order = 2, …, _order = 30).

Example 5:
OUTPUT_DS = ORDER(region_order: score; region_topp: 50) INPUT_DS;

This statement first sorts, in each sample, the regions according to their score. Then, for each
sample, it only preserves 50% of the regions (specifically, the first half of the regions, which
are ordered according to ascending score).

Example 6:
OUTPUT_DS = ORDER(cell, treatment_type; meta_topg: 1; region_order: pvalue, length,
name; region_topg: 2) INPUT_DS;

This GMQL statement groups INPUT_DS dataset samples by their metadata attribute cell and
then, for each group, it selects only the first sample, according to the ascending order of the
metadata attribute treatment_type.
In addition, inside each sample of the INPUT_DS dataset, regions are ordered according to
their ascending pvalue and length order; then, for each order group, the statement only outputs
the first two regions in each sample based on ascending order of the attribute name. Note that
the region attribute order is added to the schema of the output dataset. This new region
attribute equals to 1 in the regions that are first (by ascending order of attribute name) and 2
in the regions that are second (by the same order).

17

6) GROUP
The GROUP operator can be used on metadata and on regions.
When used on metadata attributes, GROUP performs the grouping of samples of the input dataset
based on one specified metadata attribute. If the metadata attribute is multi-value, i.e., it assumes
multiple values for sample (e.g., both <disease, cancer> and <disease, diabetes>), the grouping
identifies different groups of samples for each attribute value combination (e.g., group1 for samples
that feature the combination <disease, cancer>, group2 for samples that feature the combination
<disease, diabetes>, and group3 for samples that feature both combinations <disease, cancer>
and <disease, diabetes>).
For each obtained group, it is possible to request the evaluation of aggregate functions on
metadata attributes; these functions consider the metadata contained in all samples of the group.
The regions, their attributes and their values in output are the same as the ones in input for each
sample, and the total number of samples does not change. All metadata in the input samples are
conserved with their values in the output samples, with the addition of the _group attribute, whose
value is the identifier of the group to which the specific sample is assigned; other metadata
attributes can be added as aggregate functions computed on specified metadata.
When used on region attributes, GROUP can group regions of each sample individually, based on
their coordinates (chr, start, stop, strand) and possibly also on other specified grouping region
attributes (when these are present in the schema of the input dataset). In each sample, regions
found in the same group (i.e., regions with same coordinates and grouping attribute values), are
combined into a single region; this allows to merge regions that are duplicated inside the same
sample (based on the values of their coordinates and of other possible specified region attributes).
For each grouped region, it is possible to request the evaluation of aggregate functions on other
region attributes (i.e., which are not coordinates, or grouping region attributes). This use is
independent on the possible grouping realised based on metadata. The generated output schema
only contains the original region attributes on which the grouping has been based, and additionally
the attributes in case calculated as aggregated functions.
If the GROUP is applied only on regions, the output metadata and their values are equal to the
ones in input.
Both when applied on metadata and on regions, the GROUP operation returns a number of output
samples equal to the number of input ones.
Note that the two possible uses of GROUP, on metadata and on regions, are perfectly orthogonal,
therefore they can be used in combination or independently.
The general syntax for GROUP is:
DSout = GROUP(MA;

meta_aggregates: GM1 AS f1, ..., GMk AS fk;
region_keys: RA1, ..., RAm;
region_aggregates: GR1 AS g1, ..., GRh AS gh) DSin;

where:
● DSin is the input dataset;
● DSout is the output dataset;
● MA is the grouping metadata attribute;
● GM1, ..., GMk; are new metadata attributes generated using aggregate functions f1, ...,

fk on k metadata attributes in DSin;
● RA1, …, RAm are the grouping genomic region attributes, in addition to the implicit

default chr, left, right, strand attributes;
● GR1, ..., GRh; are new region attributes generated using aggregate functions g1, ..., gh

on h region attributes in DSin.

18

Note that meta_aggregates can be specified only if a grouping metadata attribute is specified,
while region_aggregates can be specified even when the region_keys parameter is not used,
since this is equivalent to grouping only on the four coordinates chr, left, right, strand.

Several observations can be made on the effect of GROUP:

● Should a grouping attribute be multi-valued, samples are partitioned by each subset of
their distinct values (e.g., samples with a Disease attribute set both to ‘Cancer’ and
‘Diabetes’ are within a group which is distinct from the groups of the samples with only
one value, either ‘Cancer’ or ‘Diabetes’).

● Samples having missing values for any of the grouping metadata attributes are assigned
all together to one group, identified by the special value _group = 0.

● It is not possible to perform GROUP based on multiple metadata attributes.
● When grouping applies to regions, by default it includes as grouping attributes the

region coordinates chr, left, right, strand. This choice corresponds to the procedure of
merging duplicate regions, i.e., regions with the same coordinates within the same
sample, ensuring that the result is a legal GMQL sample.

Note 1: The default form of this operator has no parameter. GROUP() DSin applies the
grouping only on the region attributes which represent the four genomic coordinates, i.e., chr,
start, stop, and strand. Inside a single sample, it collapses all regions that have equal values
in these four coordinates into a single one, thus eliminating duplicate regions.

Note 2: The option region_keys accepts as parameters only region attributes that are not
region coordinates. When used, it always implicitly considers, preceding the list of specified
attributes, the 4 region coordinates. This means that a grouping is always performed on these
coordinates before grouping on additional region attributes.

Note 3: As mentioned in the Foreword section, for the grouping metadata attributes in the
option (which is one of the possible metajoin options of GMQL) different alternatives are
available with respect to dot-separated prefixes in case present for metadata attribute names:

• metadata_attribute_name;
• EXACT(metadata_attribute_name)
• FULL(metadata_attribute_name).

Please refer to the Foreword section of this document for further details.

Example 1:
GROUPS_T = GROUP(tumor_type; meta_aggregates: MaxSize AS MAX(size)) EXP;

This GMQL statement groups samples of the input EXP dataset according to their value of the
metadata attribute tumor_type and computes the maximum value that the metadata attribute
size takes inside the samples belonging to each group. The samples in the output GROUPS_T
dataset have a new _group metadata attribute which indicates which group they belong to,
based on the grouping on the metadata attribute tumor_type. In addition, they present the new
metadata aggregate attribute MaxSize. Note that the samples without metadata attribute
tumor_type are assigned to a single group with _group value equal 0.

19

GROUPS_T:

Example 2:
GROUPS_C = GROUP(cell; meta_aggregates: n_samp AS COUNTSAMP()) EXP;

This GMQL statement takes as input dataset the same input dataset as the previous example.
Yet, it calculates new _group values based on the grouping attribute cell, and adds the
metadata aggregate attribute n_samp, which counts the number of samples belonging to the
respective group. It has the following output GROUPS_C dataset samples (note that now no
sample has metadata attribute _group with value equal 0 since all input samples include the
metadata attribute cell, with different values, on which the new grouping is based):

GROUPS_C:

20

Example 3:
GROUPS = GROUP(region_aggregates: regNum AS COUNT()) EXP;

In each individual EXP input dataset sample, this GMQL statement groups the sample regions
by their coordinates chr, left, right, strand (which are assumed implicitly), and keeps only one
region for each group (i.e., a single region with the same coordinates). This behavior
corresponds to eliminating duplicated regions in the same sample. In the output dataset
schema, the new region attribute regNum is added, computed as the number of regions that
have the same coordinates for each region group within an individual input sample, and the
computed value is assigned to each region of each output sample. All other region attributes,
which are not coordinates, are discarded.
Supposing the input dataset contained only one sample which presented the following regions,
with schema <chr, left, right, strand, name, score>:

the output dataset GROUPS would contain, similarly, only one sample, with schema <chr, left,
right, strand, regNum> and the following regions:

As it can be observed, only the 4 coordinates are preserved (name and score attributes are
discarded). The additional attribute regNum is added. Its value is 2 when the relative region
has been computed by grouping two regions from the initial sample (e.g., the region chr1,
1007265, 1009661, -), while it is 1 when the relative region only appeared once in the input
sample.

Example 4:
GROUPS = GROUP(region_keys: score;

region_aggregates: avg_pvalue AS AVG(pvalue), max_qvalue AS MAX(qvalue)) EXP;

This GMQL statement groups the regions of each EXP dataset sample by region coordinates
chr, left, right, strand (these are implicitly considered) and the additional region attribute score
(which is explicitly specified), and keeps only one region for each group. In the output
GROUPS dataset schema, the new region attributes avg_pvalue and max_qvalue are added,
respectively computed as the average of the values taken by the pvalue and the maximum of
the values taken by the qvalue region attributes in the regions grouped together, and the
computed value is assigned to each region of each output sample. Note that the region
attributes which are not coordinates or score are discarded.

Example 5:
GROUPS = GROUP(cell_tissue; meta_aggregates: min_tier AS MIN(cell_tier);

region_aggregates: min_signal AS MIN(signal)) EXP;

21

This GMQL statement shows how the GROUP operator can be used on both metadata and
regions at the same time. In this case, it first groups the samples of the EXP dataset by
metadata attribute cell_tissue values, and adds to each sample the attribute _group to indicate
which group it belongs to. Then, it calculates the minimum value of the metadata attribute
cell_tier over the samples that are part of a same group and adds this to all samples as value
of the new metadata attribute min_tier.
Inside each sample, it groups the regions based on their coordinates (implicitly considered,
without the need of using the region_keys option); for each region group it keeps only one
region, and calculates the new region attribute min_signal as the minimum of the values taken
by the region attribute signal in each region group.

7) MERGE
The MERGE operator builds a new dataset consisting of a single sample having:

● as regions, all the regions of all the input samples, with the same attributes and values;
● as metadata, the union of all the metadata attribute-values of the input samples.

A groupby clause can be specified on metadata: the samples are then partitioned in groups,
each with a distinct value of the grouping metadata attributes, and the MERGE operation is
applied to each group separately, yielding to one sample in the result dataset for each group.
Samples without the grouping metadata attributes are disregarded.
The general syntax for MERGE is:
DSout = MERGE(groupby: M1, ..., Mn) DSin;
where:

● DSin is the input dataset to be merged;
● DSout is the output dataset;
● M1, ..., Mn are the (optional) metadata attributes used in the groupby clause (see

below).

Note 1: As mentioned in the Foreword section, in gropby option (which is one of the possible
metajoin options of GMQL) different alternatives are available with respect to dot-separated
prefixes in case present for metadata attribute names:

• metadata_attribute_name;
• EXACT(metadata_attribute_name);
• FULL(metadata_attribute_name).

Please refer to the Foreword section of this document for further details.

Example 1:
MERGED_ALL = MERGE() INIT_DATA;

This GMQL statement collapses a bunch of samples (both regions and metadata) into a single
one. More in detail, it creates a new dataset MERGED_ALL consisting of a single sample
having as regions all the regions in the INIT_DATA dataset, with the same attributes and
values, and as metadata the union of all the metadata attribute values of the samples of
INIT_DATA.

22

For instance, we may have this INIT_DATA input dataset:

And would get this MERGED_ALL result:

Example 2:
MERGED = MERGE(groupby: antibody_target) EXPERIMENT;

This GMQL statement creates a dataset called MERGED, which contains one sample for each
antibody_target value found within the metadata of the EXPERIMENT dataset samples; each
created sample contains all regions from all EXPERIMENT samples with the same specific
value for their antibody_target metadata attribute.

8) UNION
The UNION operation is used to integrate homogeneous or heterogeneous samples of two
datasets within a single dataset; for each sample of either one of the two input datasets, a
sample is created in the result dataset as follows:

● its metadata attributes and values are the same as in the original sample;
● its schema is the schema of the first (left) input dataset; new identifiers are assigned

to each output sample;
● its regions are the same in coordinates and attribute values as in the original sample if

it is from the first (left) input dataset; if it is from the second (right) input dataset, its
regions are the same in coordinates, but only region attributes identical (in name and
type) to those of the first input dataset are retained, with the same values. Region
attributes which are missing in the second input dataset sample (w.r.t. the merged
schema) are set to null.

The general syntax for UNION is:
DSout = UNION() DS1 DS2;
where:

● DS1 and DS2 are the input datasets to be unified;
● DSout is the unified output dataset.

23

The union of the two schemas is performed by taking only the schema of the first dataset,
removing the region attributes of the second dataset which are not identical to those of the
first dataset; two region attributes are considered identical if they have the same name and
type. To avoid losing region attributes from the second dataset, before the union new attributes
can be added to the first dataset by using the PROJECT operator; the new attributes must be
identical in name and type to those present only in the second dataset, and must be added
with null value (in the case of attributes of numerical type) or empty string value (in the case
of attributes of type STRING). For what concerns metadata, attributes of samples from either
the first or second input dataset are enriched with an additional _provenance attribute with
value the name of one of the two input datasets, so as to trace the dataset to which they
originally belonged.

Example:
FULL = UNION() BROAD NARROW;

This statement creates a dataset called FULL which contains all samples from the datasets
BROAD and NARROW (that could include broadPeak and narrowPeaks data samples from
ENCODE experiments), whose schema is defined by merging BROAD and NARROW dataset
schemas (union of all the attributes present in both the two input datasets).

9) DIFFERENCE
DIFFERENCE is a binary, non-symmetric operator that produces one sample in the result for
each sample of the first operand (left input dataset), by keeping the same metadata attributes
and values of the first operand sample and only those regions (with their attributes and values)
of the first operand sample which do not intersect with any region in the second operand (right

24

input dataset) sample (also known as negative regions). The general syntax for DIFFERENCE
is:
DSout = DIFFERENCE(exact: true; joinby: M1,..., Mn) DSref DSneg;
where:

● DSref is the reference dataset, i.e., the dataset which is copied in the output and from
which regions of DSneg are “subtracted”;

● DSneg is the negative dataset, i.e., the dataset whose regions are checked for
intersection against the reference regions. If any reference region is found to have
intersection (or exact coordinate matching, in case of specifying the exact: true option)
with a region in DSneg, it is removed from the output dataset;

● DSout is the output dataset;
● M1, ..., Mn; are the (optional) metadata attributes used in the joinby clause.

The optional joinby clause is used to extract subsets of samples on which to apply the
DIFFERENCE operator: only those samples s1 ∈ DSref and s2 ∈ DSneg that have the same
value for each attribute M1 through Mn are considered when performing the DIFFERENCE.

Note 1: DIFFERENCE operates in two different modes based on region intersection: the
default behavior (i.e., DIFFERENCE() DSref DSneg), and the exact matching (i.e.,
DIFFERENCE(exact: true) DSref DSneg). In the second case, only regions in the first dataset
whose coordinates do not exactly match the coordinates of any region in the second dataset
are kept in the output dataset.

Note 2: If all regions of a sample in the first input dataset intersect (match, if the exact option
is used) at least a region in the second input dataset, the sample is not included in the output
dataset.

Note 3: As mentioned in the Foreword section, in joinby option (which is one of the possible
metajoin options of GMQL) different alternatives are available with respect to dot-separated
prefixes in case present for metadata attribute names:

• metadata_attribute_name;
• EXACT(metadata_attribute_name);
• FULL(metadata_attribute_name).

Please refer to the Foreword section of this document for further details.

Example 1:
OUT = DIFFERENCE() EXP1 EXP2;

This GMQL statement returns all the regions in the first dataset that do not overlap any region
in the second dataset.

25

Example 2:
RES = DIFFERENCE(exact: true) EXP1 EXP2;

This statement extracts all regions in the first input dataset EXP1 that do not coincide (exactly
from the start to the end coordinate) with at least a region in the second input dataset EXP2.

Example 3:
OUT = DIFFERENCE(joinby: antibody_target) EXP1 EXP2;

This GMQL statement performs the DIFFERENCE operation considering subsets of samples
that have the same value for the metadata attribute antibody_target; indeed, only those
samples si ∈ EXP1 and sj ∈ EXP2 that have the same value of antibody_target are compared.
For every different value of antibody_target, the statement allows to extract all the regions of
EXP1 samples, with an antibody_target value, that do not intersect any of the regions of EXP2
samples with the same antibody_target value.

10) MAP
MAP is a non-symmetric operator over two datasets, respectively called reference and
experiment. The operation computes, for each sample in the experiment dataset, aggregates
over the values of the experiment regions that intersect with a region in a reference sample,
for each region of each sample in the reference dataset; we say that experiment regions are
mapped to the reference regions. The number of generated output samples is the Cartesian
product of the samples in the two input datasets; each output sample has the same regions
as the related input reference sample, with their attributes and values, plus the attributes
computed as aggregates over experiment region values. Output sample metadata are the
union of the related input sample metadata, whose attribute names are prefixed with their input
dataset name.
For each reference sample, the MAP operation produces a matrix like structure, called
genomic space, where each experiment sample is associated with a row, each reference
region with a column, and each matrix row is a vector of numbers - the aggregates computed
during MAP execution. When the features of the reference regions are unknown, the MAP
helps in extracting the most interesting regions out of many candidates.
The general syntax for MAP is:
DSout = MAP(NR1 AS g1, …, NRh AS gh;
 count_name: X;

joinby: MA1,..., MAn) DSref DSexp;
where:

● DSref is the reference dataset;
● DSexp is the experiment dataset;
● DSout is the output dataset;
● NR1, ..., NRh; are new genomic region attributes (optionally) generated using functions

g1, ..., gh on existing experiment region attributes;

26

● X is an optional preference name given by the user to the metadata attribute which
corresponds to the number of each experiment sample region intersecting a certain
reference region;

● MA1, ..., MAn; are the (optional) metadata attributes used in the joinby clause (see
below).

Note 1: In each reference sample, multiple regions with exactly the same coordinates and
attribute values are managed as a single region.

Note 2: The COUNT() aggregate (counting the number of each experiment sample region
intersecting a certain reference region) is always computed; results are stored, by default, in
an attribute named count_[DSrefName]_[DSexpName], where DSrefName and DSexpName
are the names of DSref and DSexp, respectively. To rename the default name of this attribute
to a custom name, e.g., myCountName, use the following syntax: DSout = MAP(count_name:
myCountName) DSref DSexp; (Please note that in case together with count_name you like to
calculate new region attributes, according to the MAP() syntax you have to specify the latter
ones as first predicate of the MAP(), e.g., DSout = MAP(avg_score AS AVG(score);
count_name: myCountName) DSref DSexp;)

Note 3: No parameter is mandatory in the MAP operator. The default behavior with syntax
MAP() DSref DSexp performs the operation without adding any new region attributes (besides
the always computed default one (see Note 1) with the number of each experiment sample
region intersecting a given reference region), and in its computation it compares all samples
of the reference dataset DSref with all samples of the experiment dataset DSexp.

Note 4: As mentioned in the Foreword section, in joinby option (which is one of the possible
metajoin options of GMQL) different alternatives are available with respect to dot-separated
prefixes in case present for metadata attribute names:

• metadata_attribute_name;
• EXACT(metadata_attribute_name);
• FULL(metadata_attribute_name).

Please refer to the Foreword section of this document for further details.

We first describe the effect of the basic MAP operation (without joinby clause). Let:

● s1 ∈ DSref be a given reference sample with R1 the set of its regions and M1 its metadata;
● s2 be a generic sample of the experiment dataset DSexp with R2 the set of its regions

and M2 its metadata.
A new sample s3 is constructed as follows:

● the metadata M3 are obtained by merging metadata M1 and M2, taking track of their
provenance by prefixing their attribute names with the name of their original dataset;

● the regions R3 are created such that, for each region r1 ∈ R1, there is exactly an equal
region r3 ∈ R3, with the same coordinates and having as attributes the attributes of r1

and optionally, in addition, the new attributes computed by the aggregate functions gi
specified in the operation; such aggregate functions are applied to the attributes of all
the regions r2 ∈ R2 having a non-empty intersection with r1.

The operation is iterated for each experiment samples and each reference sample, and it
generates a reference sample-specific genomic space at each reference sample iteration.

27

When the joinby clause is present, only pairs of samples s1 of DSref and s2 of DSexp with
metadata M1 and M2 that satisfy the joinby condition are considered. Syntactically, the clause
consists of a list of metadata attribute names (or their suffixes) that must be present with equal
values in both M1 and M2 (attribute names specified in the joinby clause can also refer to only
the last suffix of actual attribute names in M1 and M2 for the s1 - s2 matches to be considered).

The above figure shows the result of the MAP operation (with no joinby clause) on a small
portion of the genome. The input consists of one reference sample with 3 regions, in the DSref
dataset, and three experiment samples in the DSexp dataset; the output consists of the DSout
dataset with three samples, each with the same regions as in the reference sample, which
contain a feature called count_DSref_DSexp (if not renamed), where DSref and DSexp are the
input dataset names counting the number of experiment regions which intersect with the
specific reference region. The result can be interpreted as a (3 × 3) genome space.

Example 1:
GENES_EXP = MAP(avg_score AS AVG(score)) GENES EXP;

Given a dataset GENES, containing a single sample with a known set of gene regions, and
another dataset EXP containing genomic region results from a genomic experiment on the
same species, this GMQL statement counts the number of regions in each sample from the
experiment which overlap with a known gene, saving results in the output GENES_EXP
dataset as a region attribute named count_GENES_EXP; it also computes the average (AVG)
score value across such regions, saving results in the output GENES_EXP dataset as a region
attribute (feature) called avg_score. If GENES dataset contains multiple samples, the number
of samples in the output GENES_EXP dataset is the Cartesian product of the number of
samples in the GENES and EXP datasets, and each of the output samples represents the
mapping of a EXP sample on a GENES sample.

28

Observation:
Notice that when a reference sample include (partially) overlapping regions, all these regions
are included in the result regions, as it can be seen in the following figure.

Example 2:
OUT = MAP (minScore AS MIN(score); count_name: reg_num; joinby: cell_tissue) REF EXP;

This GMQL statement counts the number of regions in each sample from EXP that overlap
with a REF region, saving results in output as a region attribute reg_num, and for each REF
region it computes also the minimum score of all the regions in each EXP sample that overlap
with it. The MAP joinby option ensures that only the EXP samples referring to the same
cell_tissue of a REF sample are mapped on such REF sample; EXP samples with no
cell_tissue metadata attribute, or with such metadata but with a different value from the one(s)
of REF sample(s), are disregarded.

11) JOIN
The JOIN operator takes in input two datasets, respectively known as anchor (the first/left one)
and experiment (the second/right one) and returns a dataset of samples consisting of regions
extracted from the operands according to the specified conditions (known as equi predicate
and genometric predicate). The number of generated output samples is the Cartesian product
of the number of samples in the anchor and in the experiment dataset (if no joinby clause is
specified). The region attributes (and their values) in the output dataset are the union of the
region attributes (with their values) in the input datasets, unless the RIGHT_DISTINCT,
LEFT_DISTINCT, or BOTH option is specified (see later). Homonymous attributes are
disambiguated by prefixing their name with their dataset name. The output metadata are the
union of the input metadata with their attribute names prefixed with their input dataset name,
unless the RIGHT_DISTINCT or LEFT_DISTINCT option is specified (see later); in this latter
case the output metadata are equal to the metadata of the input experiment (second/right) or
anchor (first/left) dataset sample, respectively (without prefixing their attribute names).

29

The general syntax for JOIN is the following:
DSout = JOIN(genometric_predicate;

on_attributes: RA1, ..., RAm;
output: coord-param;
joinby: MA1, ..., MAn) DSanc DSexp;

where:
● DSanc and DSexp are respectively the anchor and experiment datasets;
● DSout is the output dataset;
● genometric_predicate is an optional concatenation of distal conditions by means of

logical ANDs (see later for details);
● RA1, ..., RAm are the (optional) region attributes used in the equi predicate clause, i.e.,

region attributes which must exist in both input datasets and whose values in the
experiment dataset region must be equal to their values in the anchor dataset region
for the experiment region to be considered;

● coord-param is one of four different values that declare which region is given in output
for each input pair of anchor and experiment regions satisfying the equi predicate and
the genometric predicate:

○ LEFT outputs the anchor regions from DSanc that satisfy the equi predicate and
the genometric predicate. LEFT can be postfixed by the keyword _DISTINCT
which calls for the duplicate elimination of DSanc output regions with the same
values, regardless the DSexp paired region and its values. In this case, the
output regions attributes and their values are all those of DSanc, and the output
metadata are equal to the DSanc metadata, without additional prefixes;

○ RIGHT outputs the experiment regions from DSexp that satisfy the equi
predicate and the genometric predicate. RIGHT can be postfixed by the
keyword _DISTINCT which calls for the duplicate elimination of DSexp output
regions with the same values, regardless the DSanc paired region and its values.
In this case, the output regions attributes and their values are all those of DSexp,
and the output metadata are equal to the DSexp metadata, without additional
prefixes;

○ INT outputs the overlapping part (intersection) of the anchor and experiment
regions that satisfy the equi predicate and the genometric predicate; if the
intersection is empty, no output is produced;

○ CAT outputs the concatenation between the anchor and experiment regions
that satisfy the equi predicate and the genometric predicate, i.e., the output
region is defined as having left (right) coordinates equal to the minimum
(maximum) of the corresponding coordinate values in the anchor and
experiment regions satisfying the equi predicate and the genometric predicate;

○ BOTH outputs the same regions as LEFT, but it adds in the output region
attributes the coordinates of the DSexp region that, together with the output
DSanc region, satisfies the equi predicate and the genometric predicate;

● MA1, ..., MAn are the (optional) metadata attributes used in the joinby clause (see
below).

The joinby condition (also called meta-join predicate) is used to select sample pairs satisfying
certain conditions on their metadata (e.g., regarding the same cell line or antibody target);
syntactically, it is expressed as a list of metadata attributes whose names and values must
match between samples in DSanc and DSexp in order for such samples to verify the condition
and be considered for the join.

30

As mentioned in the Foreword section, in joinby option (which is one of the possible metajoin
options of GMQL) different alternatives are available with respect to dot-separated prefixes in
case present for metadata attribute names:

• metadata_attribute_name;
• EXACT(metadata_attribute_name);
• FULL(metadata_attribute_name).

Please refer to the Foreword section of this document for further details.

Genometric predicates are fundamental for JOIN commands: they allow the expression of a
variety of distal conditions all based on the concept of genomic distance. The genomic
distance is defined as the number of base pairs (i.e., nucleotides) between the closest
opposite ends of two regions on to the same DNA strand, or when at least one of the two
regions has unknown strand, and belonging to the same chromosome (it is not defined for
regions on different chromosomes or different DNA strands). More formally, considering 𝑟𝑟1 as
the anchor region and 𝑟𝑟2 as the experiment region, their distance is calculated as
min(𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟1. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑟𝑟2. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙),𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟2. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑟𝑟1. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙)). If 𝑟𝑟1 and 𝑟𝑟2 overlap, then it is returned
as the negative number of the above definition.

Note: In the GMQL framework, overlapping regions have negative distance while adjacent
regions have distance equal to 0. In the following picture three possible cases of distance
calculation are shown. In particular, let us consider the experiment blue region marked with 1,
with left coordinate 0 and right coordinate 40 and the anchor red region with left coordinate 55
and right coordinate 160; their relative distance is calculated as: min(𝑎𝑎𝑎𝑎𝑎𝑎(55− 40),
𝑎𝑎𝑎𝑎𝑎𝑎(0 − 160)) = min(15, 160) = 15. Let us consider, instead, the experiment blue region 2,
which overlaps with the anchor red region. In this case the same genomic distance definition
must be applied preceded by a minus sign. Thus, being the coordinates of the anchor region
[55, 160] and the coordinates of the experiment region [110, 140], the distance is calculated
as: − min�𝑎𝑎𝑎𝑎𝑎𝑎(55 − 140), 𝑎𝑎𝑎𝑎𝑎𝑎(110− 160)� = − min(85, 50) = − 50. The calculation for the
blue region 3 is similar to the one for the blue region 1 (not overlapping). In this case, it is
adjacent to the anchor red region, from which it has distance equal to 0.

31

A genometric predicate is a sequence of distal conditions (i.e., evaluated using genomic
distance) defined as follows:

● MD(K) (or MINDIST(K), MINDISTANCE(K)) denotes the minimum distance clause,
which selects the first K regions of an experiment sample at minimal distance from an
anchor region of an anchor dataset sample. In case of ties (i.e., regions at the same
distance from the anchor region), all tied experiment regions are kept in the result, even
if they would exceed the limit of K

● DLE(N) (or DIST <= N, DISTANCE <= N) denotes the less-equal distance clause, which
selects all the regions of the experiment such that their distance from the anchor region
is less than, or equal to, N bases. In particular, DLE(0) searches for experiment regions
adjacent to, or overlapping, the anchor region. [Please refer carefully to the next
paragraph for the cases DLE(N) with N < 0, regarding only overlapping regions.]

● DGE(N) (or DIST >= N, DISTANCE >= N) denotes the greater-equal distance clause,
which selects all the regions of the experiment such that their distance from the anchor
region is greater than, or equal to, N bases. [Please refer carefully to the next paragraph
for the cases DGE(N) with N < 0.]

● DL(N) (or DIST < N, DISTANCE < N) and DG(N) (or DIST > N, DISTANCE > N) denote
the less and greater distance clauses, which select all regions of the experiment such
that the distance from the anchor region is less, or greater, than N bases, respectively.
In particular, DL(0) selects experiment regions overlapping with an anchor region
regardless of the amount of the overlapping. [Please refer carefully to the next
paragraph for the cases DL(N) or DG(N) with N < 0, the former one regarding only
overlapping regions.]

For a correct use of the distal conditions, it is essential to note that comparisons between the
distance between two regions and the specified N parameter in the distal conditions are to be
intended in the arithmetic meaning.
The use of these conditions is intuitive in case 𝑁𝑁 > 0: let us suppose two regions have a
relative distance of 30 (they do not overlap and the right-end of the left most region is 30 bp
distant from the left-end of the right most region). If the user wishes to select them, he/she
should either use a DLE(N) with 𝑁𝑁 ≥ 30 (e.g., DLE(40), which produces the inequality 30 ≤
40), or DGE(N) with 𝑁𝑁 ≤ 30 (e.g., DGE(20), which produces the inequality 30 ≥ 20). Similar
examples can be written using DL(N) and DG(N) conditions.
Using 𝑁𝑁 = 0 in DLE(N) allows to select regions that are either adjacent (i.e., their relative
distance is equal to zero) or overlapping in any possible way (i.e., their relative distance is
negative). This is since DLE(0) produces the inequality “some zero or negative distance” ≤ 0,
which is arithmetically always true.
Conversely, 𝑁𝑁 = 0 in DL(N) allows to select regions that are overlapping in any possible way
(and are not adjacent). This is because DL(0) produces the inequality “some negative
distance” < 0, which is arithmetically always true.
The user must be particularly careful when using distal conditions in case he/she wishes to
select only overlapping regions with a certain relative distance N. In this case, a negative N
should be used. The idea is that DLE(N) with 𝑵𝑵 < 𝟎𝟎 selects regions which are distant at least
N base pairs one from the other in absolute value, i.e., 𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑) ≥ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑁𝑁). Consider for
example two overlapping regions with relative distance -40 and two other overlapping regions
with relative distance -20. DLE(-30) selects the first ones since 𝑎𝑎𝑎𝑎𝑎𝑎(−40) ≥ 𝑎𝑎𝑎𝑎𝑎𝑎(−30), while

32

it discards the second ones since 𝑎𝑎𝑎𝑎𝑎𝑎(−20) ≱ 𝑎𝑎𝑎𝑎𝑎𝑎(−30). DGE(-30) would instead select the
second pair and not the first one.

If we consider the above image, the evaluation of the conditions is explained in the following
table:

Distal condition Exp region 1 Selected Exp region 2 Selected
DLE(-30) −20 ≤ −30 no −40 ≤ −30 yes
DGE(-30) −20 ≥ −30 yes −40 ≥ −30 no
DL(-20) −20 < −20 no −40 < −20 yes
DL(-40) −20 < −40 no −40 < −40 no
DG(-20) −20 > −20 no −40 > −20 no
DG(-40) −20 > −40 yes −40 > −40 no

An additional clause that can be specified in a genometric predicate is UP/DOWN (or
UPSTREAM/DOWNSTREAM), called the upstream/downstream clause, which refers to the
upstream or downstream directions of the genome. This clause requires that the rest of the
predicate holds only on the upstream (downstream) genome with respect to the anchor region.
More specifically:

● in the positive strand (or when the strand is unknown), UP is true for those regions of
the experiment whose right-end is lower than, or equal to, the left-end of the anchor,
and DOWN is true for those regions of the experiment whose left-end is higher than,
or equal to, the right-end of the anchor;

● in the negative strand inequalities are exchanged;
● remaining regions of the experiment must be overlapping with the anchor region.

When this clause is not present, distal conditions apply to both directions of the genome
indifferently.

Genometric clauses are strings composed of concatenations of at least one and at most four
distal conditions including DLE (or DL), DGE (or DG), MD, UPSTREAM or DOWNSTREAM;
we say that a genometric clause is well-formed if and only if it includes at least one less-equal
distance, or one less distance, or a minimum distance clause. Genometric predicates
(clauses) used in JOIN statements must be well-formed.

Examples:
The following strings are legal, well-formed, genometric predicates:

● DGE(500), UP, DLE(1000);
● MD(100), DG(3000);
● DL(2000), DOWN;
● DLE(300).

33

Note: Different orderings of the same distal clauses may produce different results. In the below
figure, we show an evaluation of the following two clauses relative to an anchor region:

A. MD(1), DGE(100);
B. DGE(100), MD(1).

In case A, the MD(1) clause is computed first, producing one region which is next excluded by
computing the DGE(100) clause; therefore, no region is produced as result. In case B, the
DGE(100) clause is computed first, producing two regions, and then the MD(1) clause is
computed, producing one region as result.

Similarly, the clauses:

A. MD(1), UP
B. UP, MD(1)

may produce different results: in case A, the minimum distance region is selected regardless
of its up/down stream position to the anchor, and then it is retained if and only if it belongs to
the upstream of the anchor, while in case B only upstream regions are considered, and the
one at minimum distance is selected.

The join result is constructed as follows:

● The meta-join predicate initially selects all pairs si of DSanc and sj of DSexp that satisfy
the joinby condition. If the clause is omitted, then the complete Cartesian product
between samples of DSanc and of DSexp is selected;

● For each such pair, a new sample sij is generated in the result, having metadata given
by the union of metadata of si and sj (unless the LEFT_DISTINCT, RIGHT_DISTINCT,
or BOTH option is specified);

● The genometric predicate is tested for all the pairs (ri, rj) of regions, for each ri ∈ si and
rj ∈ sj. This is done by giving (in turn) to each ri ∈ si the role of anchor region and then
evaluating the genometric predicate condition with all the regions rj of sj.

● The equi predicate is tested for all the pairs (ri, rj) of regions, for each ri ∈ si and rj ∈ sj.
● For every pair (ri, rj) that satisfies the conjunction of the genometric and equi

predicates, a new region is generated in sij, according to the coord-param value; the
attributes and their values of the new region are all those of the ri, and rj regions (unless
the LEFT_DISTINCT, RIGHT_DISTINCT, or BOTH option is specified), and

34

homonymous attributes are disambiguated by prefixing their input dataset name to
their name.

Note 1: By construction, the JOIN operation yields results whose number can grow
quadratically both in the number of samples and of regions; hence, it is the most
computationally intensive of all GMQL operations.

Note 2: The behavior of JOIN() without any argument is not defined; at least one of
genometric_predicate or on_attributes conditions must be provided.
In case the user chooses to specify genometric_predicate, it must contain at least one and at
most four distal conditions including DLE (or DL), DGE (or DG), MD, UPSTREAM or
DOWNSTREAM, and it must include at least one less-equal distance or one less distance, or
a minimum distance clause (which can then be combined with other clauses) in order to be
well-formed and compile. Then, if no output option is specified, the default output option CAT
is used.
In case the user chooses to specify only on_attribute (without a distance clause), this must be
followed by the specification of the output option, considering that the values allowed
are: LEFT, RIGHT, LEFT_DISTINCT, RIGHT_DISTINCT, or BOTH (whilst INT and CAT are
not permitted).
Note that, in case both distance and on_attribute conditions are specified, these are
considered in conjunction: since the distance condition has to hold, the matching region pairs
have to be on the same chr, and therefore in this case it is possible to use the INT and CAT
output options.

Example 1:
HM_TSS = JOIN(MD(1), DGE(120000); output: RIGHT; joinby: provider) TSS HM;

Given a dataset HM of ChIP-seq experiment samples regarding Histone Modifications and a
dataset called TSS with a sample including Transcription Start Site annotations, this GMQL
statement searches for those regions of HM that are at a minimal distance from a transcription
start site (TSS) and takes the first/closest one for each TSS, provided that such distance is
greater than or equal to 120K bases and the joined TSS and HM samples are obtained from
the same provider (joinby clause).

Assume that sample metadata are as shown in the following picture.

35

The first sample (HM_sample1) is excluded from JOIN genometric predicate scan because of
mismatching metadata: the cardinality of the result dataset is 2x1 = 2 samples. The result
includes only the selected regions of the right input dataset (in this case HM), with their
attributes and values together with the attributes and values of the joined region in the other
input dataset (in this case the left one TSS).

Region from HM_sample2 (purple) is replicated in HM_TSS_sample1 because it is a valid
JOIN results for both the first two TSS (red) regions, respectively; from HM_sample3 only one
green region is selected since MD(1) condition is evaluated first.

Example 2:
HM_TSS = JOIN(MD(1), DGE(120000); output: RIGHT_DISTINCT; joinby: provider) TSS HM;

This example replicates Example 1, but uses a different output option: RIGHT_DISTINCT
instead of RIGHT. RIGHT_DISTINCT allows to eliminate replicated regions in the output due
to joining with multiple regions in the other dataset sample. In this specific case, the left most
region from HM_sample2 (purple) is a valid JOIN result for both the two leftmost regions in
the TSS_sample1 (red), but in the output dataset TSS_HM only one of these two HM_sample2
regions is included (given the RIGHT_DISTINCT output option used). The output metadata
are equal to the metadata of the input experiment (HM) dataset, without prefixing their attribute
names.

Example 3:
HM_TSS = JOIN(MD(1), DGE(120000); output: CAT; joinby: provider) TSS HM;

This example includes the same input datasets, genometric predicate and joinby condition as
in Example 1, but the output is produced as the concatenation of regions selected by the
genometric predicate (see CAT description above). In the following picture we report the
output JOIN samples in this scenario:

36

Example 4:
TFBS_TSS = JOIN(DGE(5000), DLE(100000); output: LEFT) TFBS TSS;

Given a dataset TFBS that contains peak regions of transcription factor binding sites (TFBSs),
and another dataset named TSS that contains 1 bp-long transcription start sites (TSSs), this
GMQL statement returns as output all those TFBSs that are far no more than 100k bp, but no
less than 5000 bp from a TSS (i.e., in possible enhancer regions).
If one would instead be interested in the TSSs that have at least one TFBS in such regions,
this statement could be changed by using output: RIGHT instead of output: LEFT as parameter
(see Example 1).

Example 5:
 TFBS_TSS = JOIN(DL(30000); output: LEFT_DISTINCT) TFBS TSS;

For each pair of samples, one from the TFBS dataset and the other from the TSS dataset, this
statement selects all the regions in the TFBS dataset sample such that their distance from a
region in the TSS dataset sample is less than 30000 bases. The output samples do not contain
any replicate region, in case generated by the join operation, which are eliminated due to the
LEFT_DISTINCT output option (differently from the LEFT output option). The output metadata
are equal to the metadata of the input TFBS dataset, without prefixing their attribute names.

Example 6:
TFBS_TSS = JOIN(DIST < 100; output: BOTH) TFBS TSS;

For each pair of samples, one from the TFBS dataset and the other from the TSS dataset, this
statement selects all the regions of the TFBS dataset sample such that their distance from a
region in the TSS dataset sample is less than 100 bases. Output regions include all attributes
and values of selected TFBS dataset regions, as well as attributes and values and (differently
from other output options) coordinates of the paired TSS dataset region.

37

Note that Example 4, 5 and 6 show different uses of the output option. In Example 4, using
LEFT, the metadata are a union of the metadata attributes from the input TFBS and TSS
datasets, prefixed with their dataset name. The schema of the region attributes also
corresponds to the union of the attributes used in the two datasets. In Example 5, which uses
LEFT_DISTINCT, metadata attributes in the samples of the output dataset are only those
belonging to the TFBS (left) dataset, without any prefix. As far as the region attributes schema
is concerned, it is the same as the one of the TFBS (left) dataset. In Example 6, using BOTH,
the metadata are treated as in the case of the LEFT (or RIGHT) option. As to the region part,
the behavior of the output option BOTH is the same of the output option LEFT with the
difference that the coordinates of the region from the right dataset are included in the output
as additional attributes of the region selected from the left dataset.

Example 7:
TF_HM_OVERLAP = JOIN(DLE(20); output: INT; joinby: cell) TFBS HM;

The input consists of a dataset TFBS that contains peak regions of transcription factor binding
sites (TFBSs) for certain TFs, and another dataset named HM that contains regions resulting
from experiments targeting specific histone modifications (for instance methylations).
For each pair of samples, one from the TFBS dataset and the other from the HM dataset,
provided that they regard the same cell line (indicated by the joinby condition which checks
the correspondent metadata attribute cell), this statement selects all the intersections (output
option INT) between regions in a TFBS dataset sample such that their distance from a region
in the HM dataset sample is less than or equal to 20 bases.
The metadata of an output sample are the union of the metadata of the two intersected
samples which it was originated from.
For suitable histone modifications, this GMQL statement can provide evidence of actual TF
bindings to the DNA in open chromatin regions.

Note in the picture that the first blue region in TFBS_sample2 matches the first yellow region
in HM_sample1 since their distance is lower than 20 bp, but no correlated region is output in
the JOIN_sample2 since their intersection is empty.

38

Example 8:
TF_HM_OVERLAP = JOIN(DLE(0); output: INT; joinby: cell) TFBS HM;

Differently from the previous example, this JOIN statement first selects all regions in a TFBS
dataset sample such that they are adjacent to or overlap a region in the HM dataset sample
(always satisfying the joinby condition), then selects for output only the intersections between
the mentioned regions.
Note that the effect of the statement in Example 7 and in this example in the specific case
depicted below is the same.

Example 9:
TF_HM_OVERLAP = JOIN(DL(-20); output: LEFT; joinby: cell) TFBS HM;

Differently from Examples 7 and 8, this JOIN statement considers all regions in a TFBS dataset
sample such that their distance with a region in the HM dataset sample is lower than -20 bp,
i.e., TFBS regions overlapping a HM region and with a distance lower than (at least of) -20 bp
from it. This is only computed for samples satisfying the joinby condition.
In other words, the output includes only the anchor regions from a TFBS sample such that
they have a non-empty intersection with a region of a HM sample and the absolute value of
their distance is greater than 20.
As it can be observed in the figure below: the first green region in the JOIN_sample2 is not
output because the distance between the first blue region in TFBS_sample2 and the first
yellow region in HM_sample1 measures -10, which is not lower than -20; furthermore, it should
be observed that the distance between the second blue region in TFBS_sample2 and the
second yellow region in HM_sample1 measures 30 bp, which is greater than -20, so the two
regions are not matched.
Note that, in the figure, the line for JOIN_sample2 is represented only for illustration purposes
of this specific example. Indeed, since it does not contain any region, the JOIN_sample2 is
not generated in the output dataset.

39

Example 10:
TF_HM_ADJACENT = JOIN(DGE(0), DLE(0); output: LEFT; joinby: cell_karyotype) TFBS HM;

This GMQL statement returns as output only the TFBS dataset sample regions that are
adjacent to a HM dataset sample region. As it can be observed in the figure below, TFBS
samples are only matched against HM samples with the same value for the metadata attribute
cell_karyotype. In the output we observe the first pink region as the result of the match
between the first red region in the TFBS_sample1 (normal karyotype) and the first grey region
in the HM_sample2, which are adjacent (the right coordinate of the first corresponds to the left
coordinate of the second). The same applies in the case of the second blue region of the
TFBS_sample2 and the second yellow region of the HM_sample1 (both tumor karyotype).
All the other regions do not contribute to any output region because they are not adjacent but
either overlapping or not intersecting in general.

40

Example 11:
TF_HM_OVERLAP = JOIN(DL(0); on_attributes: score; output: INT) TFBS HM;

This statement shows the use of the equi predicate option, with syntax on_attributes. In case
the input datasets TFBS and HM do not present the attribute score in their schemata, the
output dataset is empty. Assuming that score is present as region attribute in both datasets,
the statement only matches those regions in the anchor dataset with the regions in the
experiment dataset that have the same value in this region attribute. In the following picture
we observe that the first red region is matched with the first blue region since they overlap
(therefore DL(0) is satisfied) and they have the same score. Same applies to the last red region
with the last blue region. Instead, the second red region does not match the first blue region
because they have a different score.

Example 12:
TF_HM_OVERLAP = JOIN(MD(1), UP; output: RIGHT) TFBS HM;

This statement shows the use of the upstream clause, with syntax UP (or UPSTREAM), in the
genometric predicate. This clause requires that the remaining part of the genometric predicate
(in this case the minimum distance clause MD(1)) holds only on the upstream genome with
respect to the regions of the anchor dataset TFBS, taking into account their strand.
In the positive strand, UP is true for those regions of the HM sample whose right end is lower
than, or equal to, the left-end of the TFBS sample regions. In the negative strand, UP is true
for those regions of the HM sample whose left end is higher than, or equal to, the right end of
the TFBS sample regions.
The first blue region in the output sample is present since it is produced by matching the first
region with positive strand in the anchor and the first region with positive strand in the
experiment. The second blue region in the output is present since it is produced by matching
the first region with negative strand in the TFBS sample and the second region with negative
strand in the HM sample. Note that in this case the right end of the TFBS region is equal to
the left end of the HM region. Note also that the third red region in the TFBS sample, with
negative strand, does not match any HM region.
In the output, accordingly to the specified output option, only regions from the experiment
dataset are given.

41

Example 13:
TF_HM_OVERLAP = JOIN(MD(1), DOWNSTREAM; output: RIGHT) TFBS HM;

This statement shows the use of the downstream clause, with syntax DOWNSTREAM (or
DOWN), in the genometric predicate. This clause requires that the remaining part of the
genometric predicate (in this case the minimum distance clause MD(1)) holds only on the
downstream genome with respect to the regions of the anchor dataset TFBS, taking into
account their strand.
In the positive strand, DOWN is true for those regions of the HM sample whose left end is
higher than, or equal to, the right end of the TFBS sample regions. In the negative strand,
DOWN is true for those regions of the HM sample whose right end is lower than, or equal to,
the left end of the TFBS sample regions.
In the figure below the first blue region in the output is not created because the two regions
from which it could be generated are overlapping.
The second blue region in the output is created because it matches the downstream clause:
its right end is lower than the left end of its closest anchor region with a negative strand.
The third blue region is not created because the blue HM region does not match the
downstream clause with neither the second red TFBS region, nor the third red TFBS region.
In the output, accordingly to the specified output option, only regions from the experiment
dataset HM are given.

42

12) COVER
COVER is a GMQL operator that takes as input a dataset (of usually, but not necessarily,
multiple samples) and returns another dataset (with a single sample, if no groupby option is
specified) by “collapsing” the input samples and their regions according to certain rules
specified by the COVER parameters. The attributes of the output regions are only the region
coordinates, plus in case, when aggregate functions are specified, new attributes with
aggregate values over attribute values of the contributing input regions; in addition, the two
attributes JaccardIntersect and JaccardResult are always added, computed as described
below. Output metadata are the union of the input ones.
The COVER operation is used to:

● reduce the regions of multiple samples in a single sample (particularly when the
samples are replicas of the same experiment);

● deal with overlapping regions;
● compute aggregates on the overlapping regions.

The general syntax of the COVER operator is:
DSout = COVER(minAcc, maxAcc;

groupby: M1, …, Mn;
aggregate: NR1 AS g1, …, NRh AS gh) DSin;

where:
● DSin is the input dataset;
● minAcc (maxAcc) is the minimum (maximum) accumulation value, i.e., the minimum

(maximum) number of overlapping regions to be considered during COVER execution;
● DSout is the output dataset;
● M1, ..., Mn; are the (optional) metadata attributes used in the groupby clause (see

below);
● NR1, ..., NRh; are new genomic region attributes (optionally) generated using aggregate

functions g1, ..., gh on existing region attributes.
The special keywords ANY and ALL can be used instead of numbers for minAcc and maxAcc.
In particular:

● ALL sets the minimum (and/or maximum) to the number of samples in the input
dataset;

● ANY acts as a wildcard and can be used only as maxAcc value; in this case, the
COVER extracts all regions with any maximum accumulation value. For instance,
COVER(2, ANY) considers all areas defined by a minimum of two overlapping regions
in the input dataset, up to any amount of overlapping (3, 4, 5, and so on).

Note 1: COVER and its three variants (FLAT, SUMMIT, and HISTOGRAM), which are
described in the following, do not have default arguments (i.e., COVER() DSin does not
compile); minAcc and maxAcc must always be specified.

Note 2: Given any two integer numbers k and n, minAcc and maxAcc can be optionally
expressed as functions of ALL, with the following possible structures:

• ALL / n;
• (ALL + k) / n.

43

The division is to be considered as an integer division (e.g., 5 / 2 = 2).

Note 3: As mentioned in the Foreword section, in groupby option (which is one of the possible
metajoin options of GMQL) different alternatives are available with respect to dot-separated
prefixes in case present for metadata attribute names:

• metadata_attribute_name;
• EXACT(metadata_attribute_name);
• FULL(metadata_attribute_name).

Please refer to the Foreword section of this document for further details.

We first describe the COVER operation with no grouping. In such a case, the operation
produces a single output sample, and all the metadata attribute-values of the contributing input
samples in DSin are assigned to the resulting single sample in DSout. Regions of the resulting
sample are built from DSin in the following way:

● Each resulting region r in DSout is the contiguous intersection of at least minAcc and at
most maxAcc contributing regions ri in the samples of DSin;

● When regions are stranded, COVER is separately applied to positive and negative
strands, unless also unstranded regions are present. In this case, all regions are
considered unstranded only;

● Resulting regions may have new attributes NRi, calculated by means of aggregate
expressions over the attributes of the contributing regions; for instance, Jaccard
Indexes are standard measures of similarity of the contributing regions ri, added as
default region attributes. The JaccardIntersect index is calculated as the ratio between
the lengths of the intersection and of the union of the contributing regions; the
JaccardResult index is calculated as the ratio between the lengths of the result and of
the union of the contributing regions.

In the above figure we show the results of COVER with minAcc and maxAcc parameter values
set respectively to (2, 2), (1, 2), and (2, 3). Note that in the figure cases ALL = 3; so, for
instance, COVER(2, 3) provides the same result as COVER(2, ALL).

44

When a groupby clause is specified, the input samples are partitioned in groups, each with
distinct values of the grouping metadata attributes, and the COVER operation is separately
applied (as described above) to each group, yielding to one sample in the result for each group
(input samples that do not satisfy the groupby condition are disregarded).

Example 1:
RES = COVER(2, ANY) EXP;

This GMQL statement produces an output dataset with a single output sample. The COVER
operation considers all areas defined by a minimum of two overlapping regions in the input
samples, up to any amount of overlapping regions. In the figure below we show how no regions
are created in the output where only one or no region in the input samples is present. Output
region attributes include only region coordinates and Jaccard indexes (JaccardIntersect and
JaccardResult). Metadata are the union of the input metadata, as shown in figure.

Example 2:
RES = COVER(2, 3; groupby: cell; aggregate: min_pvalue AS MIN(pvalue)) EXP;

This GMQL statement computes the result grouping the input EXP samples by the values of
their cell metadata attribute, thus one output RES sample is generated for each cell type;
output regions are produced where at least 2 and at most 3 regions of grouped EXP samples
overlap, setting as attributes of the resulting regions the minimum pvalue of the overlapping
regions (min_pvalue) and their Jaccard indexes (JaccardIntersect and JaccardResult).

Example 3:
CELL_TF = COVER(1, ANY; groupby: cell, antibody_target) NARROW_PEAK;

Given a dataset NARROW_PEAK, containing transcription factor binding site (TFBS) regions
from a repository (e.g., ENCODE), for each antibody target of each cell line, this GMQL
statement produces output regions where at least a binding site of the given transcription
factor for the given cell exists, grouping cells (first) and antibody targets (then); output regions
have only their Jaccard indexes as their attributes. This statement is typically used to extract
any possible regions where a TFBS for a given cell line can exist; by rising the minAcc
parameter (e.g., to 2, 3, or more), the same statement can be used to extract consensus

45

regions (i.e. regions with higher probability of containing actual signal, in the example case a
TFBS for a given cell line).

Cover variants

Three variants are available in GMQL for the COVER operation, which vary the coordinates
of the returned regions as follow:

● FLAT returns the union of all the regions which contribute to the COVER. More
precisely, it returns the contiguous regions that start from the first end and stop at the
last end of the regions which contribute to each region of a COVER with the same
parameters;

● SUMMIT returns only those portions of the COVER result with the maximum number
of overlapping regions (this is done by returning only regions that start from a position
after which the number of overlaps does not increase, and stop at a position where
either the number of overlapping regions decreases or violates the maximum
accumulation index);

● HISTOGRAM returns all regions contributing to the COVER divided in different
(contiguous) parts according to their accumulation index value (one part for each
different accumulation value), which is assigned to the additional AccIndex region
attribute.

The syntax for all variants is the same as for the COVER statement, only replacing COVER
with FLAT, HISTOGRAM, or SUMMIT, respectively, as required. Output metadata, as well as
region attributes and values, are as for the COVER statement, except for HISTOGRAM which
always provides also the AccIndex region attribute.

Example 1:
RES = FLAT(2, 4; groupby: cell) EXP;

This GMQL statement computes the result grouping the input EXP samples by the values of
their cell metadata attribute, thus one output RES sample is generated for each cell type.
Output regions are produced by concatenating all regions which would have been used to
construct a COVER(2, 4) statement on the same dataset; Jaccard indexes (JaccardIntersect
and JaccardResult) are set as in the COVER case.

Example 2:
RES = SUMMIT(2, 4; groupby: cell) EXP;

This GMQL statement computes the result grouping the input EXP samples by the values of
their cell metadata attribute, thus one output RES sample is generated for each cell type.
Output regions are produced by extracting the highest accumulation of overlapping
(sub)regions, according to the methodologies described above; Jaccard indexes
(JaccardIntersect and JaccardResult) are set as in the COVER case.

46

Example 3:
RES = HISTOGRAM(2, 4; groupby: cell) EXP;

This GMQL statement computes the result grouping the input EXP samples by the values of
their cell metadata attribute, thus one output RES sample is generated for each cell type.
Output regions are produced by dividing results from COVER in contiguous sub-regions
according to the varying accumulation values (from 2 to 4 in this case): one region for each
accumulation value (see figure below for a visual explanation; please note that in the figure
HISTOGRAM_sample2 the accumulation values of some regions do not appear due to the
complexity of the example and the limited figure resolution). Jaccard indexes (JaccardIntersect
and JaccardResult) are set as in the COVER case.

Example 4:
RES = HISTOGRAM(ALL/2, (ALL+1)/2; groupby: antibody_target) EXP;

This statement computes the result grouping the input EXP samples by the values of their
antibody_target metadata attribute, thus one output sample is generated for each type of
antybody target.
Assuming that the cardinality of the EXP dataset is of 8 samples, then ALL = 8. By computing
the simple arithmetic operations, we obtain minAcc = 4 and maxAcc = floor(4.5). Therefore,
the output regions are produced exactly as if the user had performed an HISTOGRAM(4, 4),
after applying the groupby option, i.e., HISTOGRAM(4, 4; groupby: antibody_target).

47

C. FEDERATED EXTENSIONS
A federated GMQL query is executed at two or more communicating servers or clouds (each
one from now on called GMQL instance). Such execution is launched at a given GMQL
instance by a user and terminates at that site with a MATERIALIZE statement that moves the
result in the user’s private space. Usual GMQL queries are extended by means of directives
and operation allocations.

• Operator allocation:
A new named optional parameter [at: instance_name] is available for all the
operators. It indicates that the operation has to be performed on the specified GMQL
instance. If a policy is specified (as described below), the operators for which the
allocation parameter is missing are automatically allocated by the policy. The SELECT
operation that applies directly to a GDM dataset must be allocated at the GMQL
instance where the dataset is stored – as this operation is also responsible of loading
the dataset from the file system.

Example 1:
RES = JOIN(DIST < 100; output: LEFT; at:CINECA) genes myMutations;

This statement executes a JOIN between the two datasets “genes” and “myMutations” on the
CINECA instance.

• Directives:
Directives are used in order to specify properties that hold for the whole query. For this
reason, they should be written at the beginning of the query. Directives are introduced
by the special character “@”. The current GMQL system provides two directives:

1) @protected <dataset_name>
When present, it implies that the user wants to protect the specified dataset
from being moved to other GMQL instances. The derived execution plan of
the query must be such that the specified dataset and any of the results
obtained from its manipulation are not moved from its original GMQL
instance; when instead the execution plan violates such property, e.g., due to
specific constraints, execution is terminated with a documented error. Several
datasets (on the same GMQL instance) may be protected in the same query;
in this case, a directive for each dataset has to be written.

2) @policy <policy_name> [<parameter>]
When present, it indicates that the allocation of the sub-queries to the GMQL
instances is automatically decided by the system, according to the specified
policy. Three policies can be specified:
(a) @policy distributed: each dataset is processed on the instance of origin

until a move is required; this happens when a binary operation (e.g., a
JOIN) on two datasets that are in two distinct instances is performed. By
default, the right dataset specified in the operation is moved to the
location of the left dataset. The choice may change in presence of the
protected directive, so as to satisfy the protection constraint.

48

(b) @policy centralized instance_name: all the operations of the query
except the initial SELECTs are executed on the specified GMQL instance.

(c) @policy externalized cluster_name: all the operations of the query
except the initial SELECTs are executed on the specified cluster.

Example 2:

@policy distributed
@protected myMutations

myMUT = SELECT() myMutations;
DS2 = SELECT(at:CINECA) CINECA.sample_dataset;
DS3 = COVER(1, ANY) DS2;
RES = MAP() myMUT DS3;

In this query, the dataset “myMutations” is protected and will not be moved from the local
GMQL instance, and the chosen policy is “distributed”; thus, the system will allocate the
execution of the COVER operation on the CINECA instance (accordingly to the distributed
policy) and the MAP operation on the local instance (so as not to violate the protection on
the “myMutations” dataset).

	Introduction
	A. GENOMIC DATA MODEL (GDM)
	B. BASIC OPERATORS
	Foreword: Syntactic conventions and other observations
	1) SELECT
	2) MATERIALIZE
	3) PROJECT
	4) EXTEND
	5) ORDER
	6) GROUP
	7) MERGE
	8) UNION
	9) DIFFERENCE
	10) MAP
	11) JOIN
	12) COVER
	Cover variants

	C. FEDERATED EXTENSIONS

