GMQL Functional Comparison with BEDTools and BEDOPS

Genomic Computing Group
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

This document presents a functional comparison of GMQL with the NGS tools BEDTools and
BEDOPS, which are rather popular among biologists for genomic region manipulations. The
comparative example below highlights a series of differences between GMQL and BEDTools and
BEDOPS, which are hereby summarized.

o Experimental data selection in BEDTools and BEDOPS must be done manually, as these
tools do not handle metadata and thus cannot support any selection over datasets.
Conversely, GMQL supports selections using metadata.

e Annotation retrieval must also be done manually in BEDTools and BEDOPS, through the
use of Genome Browsers (e.g. UCSC and Ensembl). In GMQL, annotations are selected in
the same way as experimental data, by using selections.

o Differently from BEDTools and BEDOPS, GMQL does not require sorted inputs, since it
automatically sorts them before processing.

e In order to perform the same operation on different samples, BEDTools and BEDOPS
require the use of cycles and control structures, embedded in other languages. Conversely,
GMQL allows multiple samples to be grouped in the same dataset and GMQL operations
are applied in batch, i.e. to every sample in the dataset.

« BEDTools and BEDOPS do not have an internal standard for data format. Different scripts
may lead to different output formats. This implies the need for external languages to
manipulate outputs (e.g. AWK or SED), with longer scripts, and requires the knowledge of
different scripting languages. Conversely, GMQL has a unique internal data format, for
every region operation, and the output is always produced in GTF format.

Next, we present a relevant biological example which is fully developed using the three approaches.

Enhancer-gene distal binding relationship
Description:

In this example we want to find distal regulatory elements (i.e. enhancers) that may interact with a
gene of interest (the proximal element), through the CTCF transcription factor (TF). The distance of
a distal element from a gene is considered starting from the gene transcription start site (TSS). First,
we set the distance TF-gene; then we consider the presence of a putative enhancer region using its
typical histone modifications. This example is also included in our submitted paper (Example 2);
here, we provide a simplified version applied to single samples of a single cell line in order to be
directly performed also in BEDTools and BEDOPS.

Procedure:

Find all enriched regions (peaks) in the CTCF transcription factor (TF) ChlP-seq sample from the
K562 human cell line which are the nearest regions farther than 100 kb from a transcription start
site (TSS). For the same cell line, find also all peaks for the H3K4mel histone modifications (HM)
which are also the nearest regions farther than 100 kb from a TSS. Then, out of the TF and HM
peaks found in the same cell line, return all TF peaks that overlap with both HM peaks and known
enhancer (EN) regions.

1. GMQL

TASK 1: DATA COLLECTION

Select and retrieve ChlIP-seq, TSS and enhancer data

One sample selected for each TF, HM, TSS and EN dataset

TF = SELECT(dataType == 'ChipSeq' AND view == 'Peaks' AND cell == 'K562' AND antibody_target == 'CTCF'
AND lab == 'Broad') HG19_PEAK;

HM = SELECT(dataType == 'ChipSeq' AND view == 'Peaks' AND cell == 'K562' AND
antibody_target == 'H3K4mel' AND lab == 'Broad') HG19_PEAK;

TSS = SELECT(ann_type == 'TSS' AND provider == 'UCSC') HG19_ANN;

EN = SELECT(ann_type == 'enhancer' AND provider == 'UCSC') HG19_ANN;

TASK 2: DATA PREPARATION

Merge multiple overlapping or adjacent regions in each input file

Although GMQL manages such regions correctly in each operation, including in the following JOINs, this
step is required for comparison with BEDTools and BEDOPS since both these tools merge such regions
internally before performing closestBed or closest-features operations, respectively

TF1 = COVER(1, ANY) TF;

HM1 = COVER(1, ANY) HM;

TSS1 = COVER(1, ANY) TSS;

EN1 = COVER(1, ANY) EN;

TASK 3: DATA PROCESSING

Extract only TF and HM peaks farther than 100 kb from a TSS

TF2 = JOIN(first(1) after distance 100000, right_distinct) TSS1 TF1;
HM2 = JOIN(first(1) after distance 100000, right_distinct) TSS1 HM1;

Extract only farther TF peaks overlapping with farther HM peaks and enhancer regions
HM3 = JOIN(distance < 0, int) EN1 HMZ2;
TF_res = JOIN(distance < 0, right) HM3 TF2;

STORING RESULTS
MATERIALIZE TF_res;

2. BEDTools

TASK 1: DATA COLLECTION
SELECT is not available in BEDTools; data selection must be done manually and data must be present locally
Input data saved locally:

CTCF peaks: wgEncodeBroadHistoneK562CtcfStdPk.broadPeak

H3K4mel peaks: wgEncodeBroadHistoneK562H3k4melStdPk.broadPeak
TSS: TSS_h19.bed

Enhancers: VistaEnhancers_hg19.txt

TASK 2: DATA PREPARATION

BEDTools requires sorted input data

sortBed -i wgEncodeBroadHistoneK562CtcfStdPk.broadPeak > CTCF_sorted.bed;

sortBed -i wgEncodeBroadHistoneK562H3k4mel1StdPk.broadPeak > H3K4mel_sorted.bed;
sortBed -i TSS_hg19.bed > TSS_sorted.bed;

sortBed -i VistaEnhancers_hg19.bed > VistaEnhancers_sorted.bed;

Merge multiple overlapping or adjacent regions in each input file

BEDTools requires this operation to flatten all the overlapping regions
bedtools merge -i CTCF_sorted.bed > CTCF_merged.bed;

bedtools merge -i H3K4mel_sorted.bed > H3K4mel_merged.bed;

bedtools merge -i TSS_sorted.bed > TSS_merged.bed;

bedtools merge -i VistaEnhancers_sorted.bed > VistaEnhancers_merged.bed;

TASK 3: DATA PROCESSING
Extend TSS regions
AWK is needed to set 100 kb distance from each TSS, by extending the coordinates of each original TSS
If the start position of a TSS is less than or equal to 100000, the start coordinate of its extended region
H#issettol
awk -v OFS="\t" '{ if ($2-100000 <= 0) {print $1,1,$3+100000,54,55,56} else

{print $1,$2-100000,5$3+100000,54,55,56} }' TSS_merged.bed > TSS_extended.bed;

Extract only TF and HM peaks farther than 100 kb from a TSS, by searching for the closest CTCF or
H3K4me1l binding site to each extended TSS region
BEDTools closestBed command produces a “NA” label if the reference file has no related closest peaks.
To remove “NA” labels, a supplementary AWK operation is required
closestBed -t all -a TSS_extended.bed -b CTCF_merged.bed |
awk -v OFS="\t" '{if (55 > 0) {print $4,55,56} }' > CTCF_closest.bed;
closestBed -t all -a TSS_extended.bed -b H3K4mel_merged.bed |
awk -v OFS="\t" '{if (§5 > 0) {print $4,55,56} }' > H3K4me1_closest.bed;

CTCF_closest.bed and H3K4me1_closest.bed files contain duplicate regions, because a peak that is the
closest to multiple TSSs is reported multiple times

BEDTools lacks a "distinct" operator; AWK must be used to removed duplicates

awk 'Ix[SO]++' CTCF_closest.bed > CTCF_closest_distinct.bed;

awk 'Ix[SO]++' H3K4mel_closest.bed > H3K4me1_closest_distinct.bed;

Extract only farther TF peaks overlapping with farther HM peaks and enhancer regions
bedtools intersect -a VistaEnhancers_merged.bed -b H3K4me1l_closest_distinct.bed > H3K4mel_enhancers.bed;
bedtools intersect -a H3K4mel_enhancers.bed -b CTCF_closest_distinct.bed > CTCF_H3K4me1_enhancers.bed;

3. BEDOPS

TASK 1: DATA COLLECTION
SELECT is not available in BEDOPS; data selection must be done manually and data must be present locally
Input data saved locally:

CTCF peaks: wgEncodeBroadHistoneK562CtcfStdPk.broadPeak

H3K4mel peaks: wgEncodeBroadHistoneK562H3k4melStdPk.broadPeak
TSS: TSS_h19.bed

Enhancers: VistaEnhancers_hg19.txt

TASK 2: DATA PREPARATION

BEDOPS requires sorted input data

sort-bed wgEncodeBroadHistoneK562CtcfStdPk.broadPeak > CTCF_sorted.bed;

sort-bed wgEncodeBroadHistoneK562H3k4me1StdPk.broadPeak > H3K4mel_sorted.bed;
sort-bed TSS_hg19.bed > TSS_sorted.bed;

sort-bed VistaEnhancers_hg19.bed > VistaEnhancers_sorted.bed;

Merge multiple overlapping or adjacent regions in each input file

BEDOPS requires this operation to flatten all the overlapping regions
bedops --merge CTCF_sorted.bed > CTCF_merged.bed;

bedops --merge H3K4mel_sorted.bed > H3K4mel_merged.bed;

bedops --merge TSS_sorted.bed > TSS_merged.bed;

bedops --merge VistaEnhancers_sorted.bed > VistaEnhancers_merged.bed;

TASK 3: DATA PROCESSING
Extend TSS regions
AWK is needed to set 100 kb distance from each TSS, by extending the coordinates of each original TSS
If the start position of a TSS is less than or equal to 100000, the start coordinate of its extended region
H#issettol
awk -v OFS="\t" '{ if ($2-100000 <= 0) {print $1,1,$3+100000,54,55,56} else

{print $1,$2-100000,5$3+100000,54,55,56} }' TSS_merged.bed > TSS_extended.bed;

Extract only TF and HM peaks farther than 100 kb from a TSS, by searching for the closest CTCF or
H3K4me1l binding site to each extended TSS region
BEDOPS closest-features command produces a “NA” label if the reference file has no related closest peaks.
To remove “NA” labels, a supplementary AWK operation is required
closest-features --closest --no-overlaps --no-ref TSS_extended.bed CTCF_merged.bed |
awk -v OFS="\t" '{if (50 != "NA") {print S0} }' > CTCF_closest.bed;
closest-features --closest --no-overlaps --no-ref TSS_extended.bed H3K4mel_merged.bed |
awk -v OFS="\t" '{if (50 != "NA") {print SO} }' > H3K4me1_closest.bed;

CTCF_closest.bed and H3K4me1_closest.bed files contain duplicate regions, because a peak that is the
closest to multiple TSSs is reported multiple times

BEDOPS lacks a "distinct" operator; AWK must be used to removed duplicates

awk 'Ix[SO]++' CTCF_closest.bed > CTCF_closest_distinct.bed;

awk 'Ix[S0]++' H3K4me1_closest.bed > H3K4me1_closest_distinct.bed;

Extract only farther TF peaks overlapping with farther HM peaks and enhancer regions
bedops --intersect VistaEnhancers_merged.bed H3K4mel_closest_distinct.bed > H3K4mel_enhancers.bed;
bedops --intersect H3K4mel_enhancers.bed CTCF_closest_distinct.bed > CTCF_H3K4me1l_enhancers.bed;

Discussion:

We progressively compared the data processing steps and results produced by the three considered
systems when the three programs above are applied to CTCF and H3K4mel signal enrichment
called regions from NGS human samples aligned to the human genome assembly 19, as provided by
ENCODE (https://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html), and on
transcription start sites (TSS) and enhancer annotations, as provided by the UCSC database
(https://genome.ucsc.edu/cgi-bin/hgTables) from SwitchGear Genomics
(http://switchgeargenomics.com/) and Vista Enhancer (http://enhancer.lbl.gov/), respectively. Every
input dataset contains one single sample (including 80,538 CTCF, 125,713 HeK4mel, 131,780
SwitchGear TSS and 1,339 Vista enhancer regions, respectively); each sample contains overlapping
regions. For each step, we tested the concordance between the datasets produced by GMQL,
BEDTools and BEDOPS.

In GMQL, overlapping regions are processed independently, while in BEDTools and BEDOPS they
are implicitly considered mainly as a unique, merged region, leading to a potential loss of data. To
compare the behavior of the three algorithms avoiding differences caused by different strategies for
the management of overlapping regions, in all programs we performed a first step to merge
overlapping regions.

Using the merged input, with the first two JOIN operations in GMQL, corresponding to the
closestBed and closest-features operations in BEDTools and BEDOPS respectively, we obtained the
same results for GMQL and BEDOPS: 40,687 CTCF and 41,007 H3K4mel distinct peaks.
BEDTools returned different results since the closestBed function cannot find the closest regions
non-overlapping reference regions, but it considers overlapping regions (i.e. features) as the closest
(i.e. at distance 0).

Another minor source of differences among the three considered systems is represented by the
management of ties, i.e. features that are equidistant from a reference region. When occurring, in
GMQL ties are both retained, whereas in BEDTools the -t option allows the user to specify which
feature has to be retained: left, right, all. Conversely, in BEDOPS, the preference is always assigned
only to the left feature, reducing the number of returned regions as compared to the other two
systems. Although ties are not present in our comparative dataset, they may represent a potential
issue for other comparisons.

When searching for regions at a given distance from (or intersecting with) a reference region, the
same region can be correctly returned several times when it satisfies the searching constraints with
respect to multiple reference regions. These duplicated regions can cause issues when the obtained
results are used as input for a subsequent operation. In the GMQL JOIN, the _distinct option allows
avoiding them; this is not possible in both BEDTools and BEDOPS, requiring the use of external
languages (e.g. AWK) to remove them.

The second two (and last) JOIN (intersect) operations returned different final results in the three
systems. BEDTools’s differences are due to the aforementioned issue in the closestBed function,
leading to a final result of 67 CTCF peaks. On the other hand, BEDOPS seems to miss some
features while doing the intersection, finally reporting 14 CTCF peaks versus 23 in GMQL. The
small number of CTCF peaks is mainly due to the very limited amount of available Vista enhancers.

