
Specification of Genomic Data Model (GDM)

and Genometric Query Language (GMQL)

Genomic Computing Group

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

November 27, 2015

1

Contents

1 Introduction 3

2 Genomic Data Model 4
2.1 Formal definition . 4
2.2 Multi-region genomic entities . 5

3 Genometric Query Language 6
3.1 General Structure of GMQL . 6
3.2 Operators for Metadata Management 8

3.2.1 Metadata Selector . 8
3.2.2 Metadata Aggregator for Region Values 8
3.2.3 Metadata Orderer and Top-k Extractor 9

3.3 Operators for Region Management 9
3.3.1 Region Filter . 10
3.3.2 Region Cover . 10
3.3.3 Region Summit . 12

3.4 Operations on Multiple Datasets 13
3.4.1 Union . 13
3.4.2 Difference . 13
3.4.3 Genometric Join . 14
3.4.4 Map . 18

2

1 Introduction

In this report, we provide the specification of the Genomic Data Model
(GDM) and of the Genometric Query Language (GMQL). GDM describes
biological samples by means of two fundamental abstractions, one for genomic
regions and one for meta-information.

• Genomic regions are characterized by their coordinates relative to a refer-
ence alignment; in such regions, biological samples exhibit relevant infor-
mation (e.g., specific DNA sequences, in the form of DNA encodings; or
gene mutations, in the form of variations from gene sequences; or peaks of
expression, further characterized by geometric or statistical properties).

• The meta-information of each sample is defined by free lists of attribute-
value pairs, which allow the identification of generic properties of the ex-
periment (e.g., experimental condition, cell line, biological sample, or the
kind of disease and patient phenotype when data have clinical nature).

GMQL raises the level of data abstraction with regard to current bioinfor-
matics query languages, as it allows query formulation by means of powerful and
at the same time rather simple operators; thus, the language supports knowledge
discovery along a variety of dimensions. The name genometric indicates that an
important aspect of the query language is to deal with genomic distances, which
are measured in terms of bases (nucleotides) between regions of the genome; as
we assume that genomic data are aligned to known references, such distances
are computed as simple arithmetic operations between region coordinates.

In the long range, the main difficulty in dealing with NGS data will be
scalability to thousands or even millions of experiments; therefore, the design
of GMQL is inspired by Pig Latin [3], a high-level, declarative language that
can be executed over an Hadoop cloud computing architecture [4]. We focus on
providing a model and query language for data interoperability at large scale,
across experiments; interoperability is guaranted by the use of a type system to
express region data, so that compatible types support well-defined operations
between them, and on arbitrary attribute-value pairs for metadata.

We do not want either to replace the current formats for genomic data
storage or to replace the data analysis tools that are used by scientists; rather
than interfering with the current experimental pipelines that are available at
each research center, our work is placed downstream of such pipelines and uses
their results and formats as inputs, by providing outputs in current standard
bioinformatics formats.

GDM and GMQL are immediately available to scientists; for this reason,
we rewrite query results in the standard GTF format [5] so that they can be
subject of further analysis using conventional tools, or communicated using
classic methods (e.g., Distributed Annotation System (DAS) protocol [6]), or
observed by using classic viewing methods (e.g., University of California at Santa
Cruz (UCSC) Genome Browser [2] or Integrated Genome Browser (IGB) [7]).
Note that query results have normally a small size even with very large datasets,
and therefore such rewritings require negligible execution time and efforts.

3

2 Genomic Data Model

The genomic data model represents genomic data samples; each sample, in
turn, consists of two parts, the region data, which describe genomic regions of
the sample, aligned to a specific reference, and the metadata, which describe
other properties of each sample, not specifically related to genomic regions.

The key aspect of the model is the notion of genomic region. A genomic re-
gion ri is a well-defined portion of the genome, further qualified by a quadruple
of values, called region coordinates: ri =< chr, left, right, strand > where
chr is the chromosome id, left and right are the two ends of the region along
the DNA coordinates; strand represents the direction of DNA reading, encoded
as either + or −, and can be missing (encoded as ∗)1. Thus, a region ri corre-
sponds to all the DNA nucleotides whose position is between its left and right
ends; however, in general, we do not include DNA sequences within region data,
but rather we store high-level properties of the region 2. Thus, each dataset
has specific attributes describing its region properties, and each attribute has
an elementary type.

Metadata describe the biological and clinical properties associated to each
sample; due to the great heterogeneity of information that can be associated
with each sample and/or dataset, they are represented as arbitrary attribute-
value pairs. We expect metadata to include at least the experiment type, the
sequencing and analysis method used for data production, the cell line, tissue,
experimental condition (e.g., antibody target) and organism sequenced; in case
of clinical study, individual’s descriptions including phenotypes.

2.1 Formal definition

Formally, a sample s is a triple < id, {< ri, vi >}, {mj} > where:

• id is the sample identifier, of type long.

• Each region is a pair of coordinates ri and values vi; coordinates are four
fixed attributes chr, left, right, strand, which are typed string,

int, int, string; values are typed attributes; we assume attribute names
of a sample to be different, and types to be any of string, int, long,

real, Boolean. The region schema of s is the set of attribute names
used for coordinates and values; the region type of s is the record of the
corresponding elementary types

1According to the UCSC notation, we use 1-based interbase coordinates, i.e., the considered
genomic sequence is [left, right). Left and right ends can be identical (e.g., when the region
represents deletion mutations).

2E.g., with ChIP-seq experiments, whose regions describe peaks of protein binding, the
region type is a record describing peak’s properties, such as p-value and q-value; with tran-
scription factors, whose regions describe binding sites, the region type includes a string of
characters encoding the DNA motif. With DNA-seq mutation data, whose regions describe
mutations, the region type includes the mutation sequence and possibly its class.

4

Figure 1: Regions and metadata of a dataset consisting of two samples; for ease
of reading, region coordinates are shown within a record and spaced.

• Metadata are attribute-value pairs mj , where we do not assume attribute
names to be different and we may also have several copies of the same
pair; values are of type string. We refer to all the attribute-value pairs
associated with a given sample s as the metadata of s.

A dataset is a collection of samples with the same region schema and type;
thus, datasets are homogeneous collections of samples, that are typically pro-
duced within the same project (either at a genomic research center or within an
international consortium) using the same technology and tools. Sample identi-
fiers are unique within each dataset.

In our system we store datasets using two normalized data structures, one
for regions and one for metadata; an example of the two data structures for
representing a dataset of ChIP-seq experiments is shown in Fig. 1. Note that
the region value has an attribute of type real representing the p-Value of
each sample region; note also that the Id attribute provides a many-to-many
connection between regions and metadata of a sample; e.g., sample 1 has 5
regions and 4 attributes, sample 2 has 3 regions and 3 attributes.

2.2 Multi-region genomic entities

The model accommodates also genomic entities which are composed of mul-
tiple, correlated regions. Examples are DNA loops, possibly across different
chromosomes, chromosome fusions, or multi-specie genome sequences (e.g., viral
sequences interleaved with human sequences); these entities have values that al-
low reconstructing their intra-chromosome regions for specific references through
the query language. We formalize loop definitions and chromosome fusions.

• Loop definitions3. The region schema includes the coordinates chr,

left, right, strand and then the values read1, read2; correspond-

3These entities are generated by the sequencing of just one terminus of an amplicon per
strand, thus generating a couple of mate reads. Mate reads map in different genomic position,
but they belong to the same original amplicon. The analysis software fills the gap between

5

ingly, the first mate goes from left to read1 and the second mate goes
from read2 to right, while the loop goes from read1 to read2. When
the loop is multi-chromosome, the chromosome chr is set to a fictious
value (which stands for multi-chromosome regions) and the values chr1

and chr2 are added; then the mates go from left to read1 in chr1 and
from read2 to right in chr2.

• Chromosome Fusions4. The region schema includes the coordinates
chr, left, right, strand, the chromosome chr is set to a fictious
value, and the values are offset, chr1, chr2; correspondingly, the fu-
sion goes from left to offset in chr1 and from offset to right in
chr2.

The loop and fusion models can be mixed, yielding to a generalized fusion model
with two mate regions and a fusion point. Moreover, models from multiple
genomes can be mixed, by adding properties such as a different reference. These
generalized models are managed region by region in the query language; from
the query language it is possible to designate such regions by using the schema
attributes.

3 Genometric Query Language

GMQL is inspired by Pig Latin [3], that combines high-level declarative style
in the spirit of SQL with the low-level procedural style of map-reduce [8], [9].
Pig Latin programs are compiled into physical plans which are executed over
Hadoop [4], [10], an open-source map-reduce implementation. Users of Pig Latin
specify a sequence of steps where each step specifies only a single, high-level
data transformation. Pig Latin users observe that “the step-by-step method
of creating programs in Pig Latin is much cleaner and simpler to use than the
single block method of SQL” [3].

3.1 General Structure of GMQL

A GMQL query (or program) is expressed as a sequence of GMQL operations
with the following structure:

<variable> = operation(<parameters>) <variables>

Variables stand for GDM datasets, as shown in Fig. 1. Operations apply to one
or more operand variables and construct one result variable. Parameters
are specific of each operation.

the two mates, starting from the reference genome sequence, and restores a unique region.
Sometimes, in some data type like ChIA-PET, the two mates are left separated and linked
together using a group ID attribute. In ChIA-PET, the attribute Value indicates the number
of reads which support a given mate pair.

4Fusions are events in which genomic DNA from two chromosomes, that is normally sep-
arated, is adjacent in a single DNA strand. These regions are thus characterized by a single
sequence with an internal fusion point.

6

Parameters of several operations include predicates, used to select and join
datasets or their regions; predicates are built by arbitrary Boolean expressions
of simple predicates, as it is customary in relational algebra 5.

Predicates p(s) on regions use the attributes in the region’s schema; pred-
icates on metadata may use arbitrary names for metadata attributes. Thus,
when a predicate on regions uses an illegal attribute name, the query is also il-
legal; when a predicate on metadata uses an attribute name missing from m(s),
p(s) is unknown; as in SQL, we use three-value logics for predicate evaluation
and accept in the result of operations only datasets s for which p(s) is true.
Please note that when evaluating predicates on region attributes that include
number costants, the system performs an automatic type casting (that is, con-
version) of each attribute according to values contained in the predicate itself
rather those stored in the attribute. For instance, when the predicate value >
2 is evaluated in GMQL, the values of the attribute value are automatically
converted to integers before being confronted with 2. This might create loss of
precision and undesired output: it is advised to always using double notation
for number constants, in our case value > 2.0.

GMQL variables can be prefixed by a clause which redefines its regions:

(regions [chr as <attribute name>,] left as <attribute name>,

right as <attribute name> [, strand as <attribute name>])

This allows for managing multi-region genomic entities.
We next describe the GMQL operations; they form a closed algebra, hence

operation results are expressed as new datasets derived from their operands
and from the operation’s specifications. For each operation, we provide a in-
formal syntax, where optionality is denoted by square brackets, alternatives by
the | symbol, and repetition by listing several elements 6; nonterminal symbols
are enclosed between < and >; symbols Si denote datasets; si denote sam-
ples; Ai denote attributes; pi denote predicates; fi denote tuple expressions
7; and gi denote aggregate expressions 8. In JOIN operations, attributes are
renamed using the format <variable name>.<metadata name> whenever there
is ambiguity (as they are homonyms). We also provide a few examples together
with the operator description, while many examples are described in the final
subsection.

5The syntax of simple predicates is <expression> <comparison> <expression> where
<expression> is any parenthesized expression with conventional math operators, constants,
and attribute names, and <comparison> is one of <, <=, >, >=, ==, != on numeric data,
one of ==. != on strings; predicates are build by Boolean parenthesized expressions of simple
predicates and the constants TRUE and FALSE.

6With the notation P1..Pn we express an arbitrary number of repetitions of P.
7Tuple expressions are arithmetic expressions of attributes and constants.
8Aggregate expressions are arithmetic expressions of aggregate functions over attributes

and constants; functions MIN, MAX, SUM and AVG are applicable to numeric attributes as cus-
tomary; EXISTS is applicable to any attribute and returns 1 if the attribute has some present
values, 0 otherwise; BAG is applicable to string attributes and builds a record of their values
as a comma-separated string; COUNT has no argument and counts a number of regions, in a
vay that is specific to the operation.

7

3.2 Operators for Metadata Management

Operations on metadata apply to a single dataset and have the following general
features:

• SELECT filters out some samples by using a predicate upon metadata at-
tributes.

• AGGREGATE applies aggregate functions to region values of each sample and
adds the results to new metadata attributes.

• ORDER uses metadata attributes for ordering samples and possibly for fil-
tering the top ones based upon the ordering.

All the above operations create a new dataset; the samples which are not fil-
tered out by operations are included in the result dataset without changing
their identifiers and their regions; metadata change according to the operation’s
semantics.

3.2.1 Metadata Selector

The SELECT command selects the samples which satisfy given predicates.
Given a dataset S1, it applies a predicate p to the metadata m(s) of each sample
s of S1, and returns into S2 those samples such that p(s) is satisfied; the symbol
* can be used equivalently to TRUE. In our current implementation, all datasets
must be initially selected, as this operation causes the conversion/loading of the
corresponding files.

<S2> = SELECT(<p>) <S1>

An example of select is the following:

S2 = SELECT(type == ’gene’ AND

(provider == ’UCSC’ OR provider == ’RefSeq’)) S1;

3.2.2 Metadata Aggregator for Region Values

AGGREGATE computes aggregate functions over region values of each sample
and adds the result as new metadata attributes. Given a dataset S1 and sam-
ples s in S1, let gi be aggregate expressions over the attributes of the region
schema and let Ai be new samples attribute names. For each sample s, the new
attribute-value pair < Ai, gi(s) > is added to m(s), where gi(s) is obtained by
applying gi to the bag of values vi of attribute Ai in all the regions of s:

<S2> = AGGREGATE(<A1> AS <g1>, ..<An> AS <gn>) <S1>

For instance, the following function computes the difference between the mini-
mum and maximum pValue of the regions of each sample s in S1 and adds to
m(s) the new attribute pValueOffset:

S2 = AGGREGATE(pValueOffset AS (MAX(pValue) - MIN(pValue))) S1;

8

3.2.3 Metadata Orderer and Top-k Extractor

The ORDER command orders the samples in ascending or descending order of
their metadata, and optionally filters the top samples according to such ordering.
Given a dataset S1 and the samples s of S1, let O denote a sequence of n clauses
Ai or DESC Ai, where Ai are attributes of m(s); the ascending order is used as
default, and DESC denotes the descending ordering. The operator produces a
total order of the samples s of S1 which is coherent with the partial ordering
induced by O, and adds to the metadata a new attribute Order which explicitly
represents such total order. The operation is performed by first attempting
the cast of attributes in O from string to a numeric type, and then using the
numeric ordering if the cast succeeds, and otherwise the alphanumeric ordering;
if a metadata attribute is missing in a given sample, then the sample belongs
to the last equivalence class according to the ascending order. Further, the
optional clause TOP k filters the first k samples; as an alternative option, TOPG
k filters the first k samples for each group as defined by the first n− 1 clauses;

<S2> = ORDER([DESC]<A1>,..[DESC]<An>[; TOP <k> |; TOPG <k>]) <S1>

For instance, the following operation orders samples by sex in ascending order
and by weight in descending order within samples with the same value of sex,
and then selects the first five samples for each sex.

S2 = ORDER(sex, DESC weight; TOPG 5) S1;

3.3 Operators for Region Management

Operations for region management apply to regions and have the following gen-
eral features:

• PROJECT filters out some regions by using a predicate upon region at-
tributes and possibly computes new region attributes or changes the value
of existing region attributes.

• COVER and SUMMIT (and their variants) generate new samples whose regions
are obtained by taking intersections of operand dataset regions in a variety
of ways that depend on operations’ parameters.

The PROJECT operation with at least one region satisfying the predicate and
the DISTINCT variants of COVER and SUMMIT produce exactly one sample in the
result for each sample of their operand; the associated identifier and metadata
are not changed, with the exception that a new standard attribute RegionCount
is added to the sample metadata, whose value represents the number of regions
in the sample. The application of COVER and SUMMIT without DISTINCT variant
produces a dataset with a single sample, whose identifier is generated and whose
metadata are recomputed.

9

3.3.1 Region Filter

The PROJECT command filters regions that satisfy given predicates. For each
sample s in a dataset S1, an (optional) predicate p is applied to the regions
(ri, vi) of s. If no region of s satisfies the predicate, then s does not produce
any sample in the result S2; otherwise, s produces a sample of S2 having only
the regions where p(ri, vi) is true; the metadata of s are not changed. This
implies that if the operand dataset S1 has n samples, the result S2 will have
between 0 and n samples. In addition, existing attributes of filtered regions can
be modified or new attributes can be created by using tuple expressions fi.
The syntax is:

<S2> = PROJECT([<p>;][<A1> AS <f1>,..

<An> AS <fn>]) <S1>

The names start and stop can be used, only in the project operation, to de-
note the ends of stranded regions. If the strand is positive or omitted, start
applies to the left coordinate and stop applies to the right coordinate (e.g.
start = start - 1000 moves the left coordinate thousand bases back in the
reference genome). If the strand is negative, start applies to the right coordi-
nate and stop to the left coordinate, and additions/subtractions of coordinates
are applied inversely (e.g. start = start - 10 moves the right coordinate of
ten bases forward). The operation excludes the regions whose length becomes
negative or null (i.e., if the left end goes to the right of the right end.)

The next example shows how a region is extended of 25 bases (in the case
of positive or missing strand, the left coordinate is moved 20 bases backward
and the right coordinate is moved 5 bases forward; length is computed after
changing the right and left coordinates.)

S2 = PROJECT(pValue < 0.4 AND chr == 1; start = start - 20,

stop = stop + 5, length = right - left) S1;

3.3.2 Region Cover

COVER extracts a single sample in the result dataset from all samples of the
operand dataset; regions of the result sample are formed as combination of
regions of the operand dataset, according to the COVER parameters used. Al-
though the operation has intuitive semantics when each sample in the operand(s)
contains non overlapping regions, we next define it in the general case of samples
with overlapping regions in one or more individual samples. Syntactically, the
operation may optionally have two datasets; when a second dataset is present,
the result regions must be formed with the mandatory contribution of at least
one region of the second dataset. The syntax allows for several optional parts:

<S3> = COVER[_FLAT](<minAcc>,<maxAcc>[; JACCARD <minJ>,<maxJ>]

[; <A1> AS <g1>, ..<An> AS <gn>]

[; GROUP BY <A1>,..<An>]) <S1> [<S2>]

10

Resulting regions of the result sample are non-overlapping and are built from
the regions of samples in S1 (and, when provided, in S2) complying with the
following conditions:

a. Each resulting region is the contiguous intersection of at least minAcc and
at most maxAcc regions in S1 (and, when provided, in S2), where regions
of different strands are separately considered and unstranded regions con-
tribute to both strands; minAcc and maxAcc are called accumulation
indexes. The most liberal condition corresponds to setting the accumu-
lation indexes respectively to 1 and ANY (see next). When the FLAT option
is used, the operation returns instead the union of all the regions which
contribute to the cover. More precisely, the flat option returns a contigu-
ous region that starts from the first end and stops at the last end of the
regions which contribute to the cover. Note that with the FLAT option
the result sample may have overlapping regions.

b. When the Jaccard indexes minJ, maxJ are provided, resulting regions
must in addition have their Jaccard index included within the interval
minJ..maxJ; the Jaccard index intuitively measures the degree of over-
lapping. Omitting the parameters minJ and maxJ is equivalent to setting
them to 0 and 1 respectively.

c. If S2 is specified, then at least one region of each sample of S2 must
contribute to the regions of the result; regions of S2 are called mandatory
regions).

It is possible to use the following keywords instead of natural numbers as
values for minAcc and maxAcc:

• ANY. It can be used only as maxAcc, and in this case no maximum is set.
It is equivalent to omitting the maxAcc option.

• ALL. It is equal to the total number of samples of the operand(s), and
can be used both for minAcc and maxAcc; these can also be expressed as
arithmetic expressions built by using ALL (e.g. ALL-3, ALL+2, ALL/2; the
latter one returns the ceiling (upper integer value) of the division); cases
when maxAcc is greater than ALL are relevant with overlapping regions.

When the regions in each sample of S1 are non-overlapping, COVER(1,ANY) S1

extracts the union of regions of the samples in S1, COVER(ALL,ALL) S1 extracts
the intersections of the regions present in all the samples of S1.

All region values of the original regions are discarded, but the result regions
contain as new standard attributes JaccardIndex, a value in the range (0.0 -
1.0] which represents the ratio between the region resulting from the operation
and the union of the original regions contributing to such result; thus, the Jac-
cardIndex of COVER / SUMMIT with minAcc, maxAcc parameters set to (1,

ANY) is always 1.0, also when the FLAT option is used. In addition, it is possi-
ble to include in the regions new attributes Ai, calculated by appying aggregate

11

functions gi to the original attributes of all the regions of S1 contributing to
the result. The COUNT aggregate function counts the number of original regions
which contribute to create a region of the result. For instance, the following
COVER operation produces output regions where at least 3 regions of S1 overlap,
having as resulting region attributes their max pVal, the bag of their rName and
the JaccardIndex:

S3 = COVER(3, ANY; pVal AS MAX(pVal), names AS BAG(rName)) S1;

If we want to impose in addition that the sample S2 (e.g. an annotation)
contribute to resulting regions of the COVER, the operation becomes:

S3 = COVER(4, ANY; pVal AS MAX(pVal), names AS BAG(rName)) S1 S2;

The resulting sample has as metadata the union of the metadata of its input
samples in S1, i.e. those attribute-value pairs which appear in any sample of
S1. (and, when provided, in S2). In addition, metadata of the result sample
have a new attribute-value pair expressing the GlobalJaccardIndex).

The GROUP BY option is useful when cover should be independently computed
upon partitions of the datasets which share the same metadata. In this case,
each cover is applied to the subset of samples that share the same value for all
attributes of a group-by list; if a sample does not have an attribute-value pair
for any attribute of the list, it is discarded. The result includes one sample for
each equivalence class of the partition; metadata are given by the attribute-value
pairs which appear in all the samples of the equivalence class; by construction,
they include the attributes of the group-by list. In the next example, a cover is
performed on samples that have the same values of antibody and cell:

S3 = COVER(4, ANY; GROUPBY ’antibody’,’cell’) S1;

3.3.3 Region Summit

SUMMIT is a variant of COVER; it uses the same syntax and produces the same
metadata, but differs in the above mentioned condition (a.), as it returns only
those portions of COVER results where the maximum number of regions intersect.
More precisely, SUMMIT returns regions that start from a position where the
number of intersecting regions are not locally increasing afterwards, and stops
at a position where either the number of intersecting regions decreases, or it
violates the max accumulation index. The syntax is:

<S3> = SUMMIT[_FLAT](<minAcc>,<maxAcc>[; JACCARD <minJ>,<maxJ>]

[; <A1> AS <g1>, ..<An> AS <gn>]

[; GROUP BY <A1>,..<An>]) <S1> [<S2>]

The FLAT option returns the union of all the regions which contribute to
the SUMMIT, rather than the region with the maximum number of intersections.
More precisely, FLAT returns a region that starts from the first end and stops
at the last end of the contributing regions. Note that the result sample may
have overlapping regions.

12

3.4 Operations on Multiple Datasets

Operations on multiple datasets have the following features:

• UNION applies to many datasets and builds the union of their samples
and the merge of their schemas. Metadata of each sample are maintained
unchanged.

• DIFFERENCE applies to two datasets and preserves the regions of the first
dataset which do not intersect with regions of the second dataset. Meta-
data of the first dataset are maintained unchanged.

• JOIN applies to two datasets and pairs both regions and samples of the
operand variables when they satisfy metadata and/or region predicates.

• MAP applies to two datasets and uses the regions of one single sample
dataset as basis for aggregating the properties of each sample of the other
dataset (we informally say that the second dataset is mapped over the first
one.)

3.4.1 Union

UNION takes as input several datasets; the result contains all the samples of its
operands, with their original regions and metadata. The schema of the result is
equal to the schema of the first operand; attributes of the other operands which
are not present in such schema do not contribute to the result. The UNION

syntax is:

<Sn+1> = UNION <S1>..<Sn>

3.4.2 Difference

DIFFERENCE takes as input two datasets; for each sample of the first dataset,
the operation produces in the result those regions that have no intersection with
any of the regions of the second dataset. If the first input dataset has n samples
and the second has m samples, the DIFFERENCE result dataset will contain
between n and n−m samples. If after such operation a sample has no remaining
regions, it is discarded with its metadata; else, metadata of samples of the first
operand are unchanged. The DIFFERENCE syntax is:

<S3> = DIFFERENCE([<meta-join-pred>]) <S1> <S2>

An optional meta join predicate is used to associate to each sample of the first
dataset a (possibly empty) set of samples of the other datasets; in such case, the
difference occurs between each sample of first dataset and the union of samples
of the other datasets that satisfy the join condition. Please note that, unlike
UNION, a DIFFERENCE command with no meta-join predicate requires empty
paretheses, such as in the following example:

DIFF = DIFFERENCE() EXPERIMENT UNDESIRED_DATA;

13

3.4.3 Genometric Join

The JOIN command joins the samples (both regions and metadata) of two
datasets. The join acts in two phases.

a. First, an (optional) metadata join predicate, built as a conjunction
of predicates over metadata attributes, produces new samples. If no join
metadata predicate is specified, this phase produces as new samples the
cross product between the samples of the two datasets.

b. Then, a mandatory genometric join predicate is computed over all the
pairs of regions of new samples; the genometric join predicate deals with
distances of the regions along the reference genome and is expressed in a
way that guarantees upper bounds on such distances.

The syntax of join is:

<S3> = JOIN[_STRANDED] ([<meta-join-pred>,] <genometric-pred>,

<region-constr>) <S1> <S2>

Given two datasets S1 and S2, let s1 denote the samples of S1 and s2 de-
note the samples of S2. The join metadata predicate is built as conjunction of
simple predicates with syntax <Att1> <comparison> <Att2> (with Att1 and
Att2 metadata attributes of S1 or S2, respectively); each simple predicate eval-
uates to true when s1 has a pair <Att1,V1>, s2 has a pair <Att2, V2>, and
the comparison predicate applied to V1 and V2 is true; it evaluates to false

otherwise. In this way, pairs < si, sj > of samples are selected from the original
datasets; when no join metadata predicate is present, all the pairs in the Carte-
sian product of S1 and S2 are selected. If dataset S1 has n samples and dataset
S2 has m, the JOIN product will have at most n ∗ m samples, according to
the various meta-join and genometric distance conditions imposed. The syntax
of meta-join predicates includes a a syntactic disambiguation of attributes for
denoting the left and right operands. For instance:

left -> antibody == right -> antibody

A genometric join predicate is then applied to such pairs; if the predicate is
true, a new sample sij is produced, which belongs to the resulting dataset S3,
and is associated with a new sample identifier.

We first discuss the structure of resulting samples sij , and then the syntax
and semantics of genometric join predicates. Let us assume that the genometric
join predicate, applied to regions ri of si and rj of sj, is true. Then:

• New regions rij are computed by applying the constructor <region-constr>
to the regions ri of si and rj of sj; the constructor has four options:

a. LEFT returns the left region (i.e. the region ri from the s1 sample);

b. RIGHT returns the right region (i.e. the region rj from the s2 sample);

14

c. INT returns the region intersection (i.e. the common bases of ri and
rj); if the intersection is empty no region is produced by the pair
< ri, rj >. If no regions are produced for a given sample sij , then
the sample sij is not created;

d. CAT, the concatenation of ri and rj (i.e., all the bases from the lower
left end to the upper right end of ri and rj).

Note that several regions with the same coordinates may be produced
(either because individual input samples have overlapping regions, or be-
cause the multiple regions with the same coordinates are due to genomet-
ric predicates); the clauses PROJECT and DISTINCT allow to control these
aspects.

a. When the PROJECT LEFT clause is specified, regions of sij are the
same as the regions of the left sample si; we say that the join result
is projected on the left operand.

b. When the PROJECT RIGHT clause is specified, regions of sij are the
same as the regions of the right sample sj; we say that the join result
is projected on the right operand.

c. When the clause DISTINCT is added after the constructor LEFT, over-
lapping regions that have the same coordinates and in addition have
identical values for all the attributes of the left value vi are merged.
For what concerns the attributes of sj, they are transformed by first
casting them to string and then producing a new string value equal
to the tab delimited concatenation of such strings.

d. When the clause DISTINCT is added after the constructor RIGTH,
overlapping regions with same coordinates and identical values for
all the attributes of the right value vj are merged, and attributes
of si are obtained as the tab delimited concatenation of their values
after casting them to string.

e. When the PROJECT LEFT DISTINCT (or PROJECT RIGHT DISTINCT)
option is used, all regions with the same coordinates and values of si
(or sj) are merged, independently of their origin.

• When none of the above clauses is present, new regions are constructed
as follows:

a. The schema of regions rij is obtained as composition of the schemas
of si and sj; it includes the new identifier, the coordinates of the new
regions, and then the concatenation of the attributes of the schemas
of si and sj other than their identifier and region coordinates. To
avoid ambiguity, whenever two region attributes have the same name,
the name in the resulting regions contains as prefix the name of the
original variable (for example, S1.Pvalue and S2.Pvalue).

b. The value vij of region sij is obtained by composing the values vi
and vj of the samples si and sj.

15

c. Additionally, an attribute distance is added to the resulting schema
of regions rij to keep the distance value between the ri and rj regions.

• For what concerns metadata, when no PROJECT clause is specified, they
are obtained as the set of all the value pairs of si and sj; with the PROJECT
clause, metadata of the result are either the same as the metadata of si
(option LEFT or of sj (option RIGHT).

We next turn to genometric join predicates. They are based on the geno-
metric distance, defined as the number of bases between the closest ends of
two regions. Note that with our choice of interbase coordinates, intersecting
regions have distance less than 0 and adjacent regions have distance equal to 0;
if two regions belong to different chromosomes, their distance is undefined (and
predicates based on distance fail). Genometric predicates are not symmetric;
we distinguish between the region of the left variable, also named reference or
anchor region, and the region of the right variable.

Genometric join predicates are composed from the following simple predi-
cates:

a. DISTANCE <op> <C>, where <op> is either ’<’ or ’>’, and <C> is a constant.
The predicate is true if two regions are at a distance that is either less
or greater than C; the distance is evaluated between the closest ends of
the two regions, one of s1 and the other of s2. Note that the genometric
join predicate DISTANCE > K can only be used in the case of an interval
condition and only following a DISTANCE < H condition (which produces
an upper bound).

We also support UPSTREAM DISTANCE and DOWNSTREAM DISTANCE; they
take as reference the anchor region; the former is computed from the an-
chor region’s start, that is equal to the left end with a positive strand
and to the right end with a negative strand; the latter refers to the re-
gion’s stop; the distance is positive when it refers to the bases outside
the anchor region. When only one of the two predicates is specified, it
implicitly refers to the portion of the genome which is either upstream
(before the start) or downstream (after the stop) of the anchor region.
When both predicates are specified, in disjunctive form, each one refers to
one of the two portions of the genome with respect to the anchor region.
Distances are computed starting from the region’s ends, and by default
they are assumed to be positive, (i.e. thus, regions which intersect with
the anchor region do not qualify).

b. OVERLAPPING is true if rj overlaps with the anchor region ri.

c. MINDISTANCE is true if rj is at minimal distance from ri (the anchor
region); more than one region may be returned when several of them are at
the same distance. Note that the minimal distance is considered regardless
of the up- or down-stream direction from the anchor region. See next
simple predicate for specifically focused up- or down-stream evaluations.

16

d. FIRST AFTER [UPSTREAM |DOWSTREAM]DISTANCE <X> is a special predi-
cate that is true if rj is the closest region farther than X bases from the
anchor region ri; more than one region may be returned when several of
them are at the same distance.

We further impose that any conjunction of predicates includes either a pred-
icate of class (b), or (c), or (d), or a distance predicate of class (a) with <op> =

’<’ along both strands; the latter one can be in conjunction with a predicate
of any other class, or with another class (a) predicate with <op> = ’>’, with
proper C values to define a bound interval; a class (a) predicate with <op> =

’>’ can also be in conjunction with a predicate of class (c); additionally, a class
(b) predicate can be in conjunction with a predicate of any other class. These
conditions guarantee a reasonable bound on the number of regions that satisfy
the genometric join predicate.

Thus, for each anchor region the following predicates are legal:

a. (DISTANCE < 100) AND (DISTANCE > 0) is true for the regions which
fall outside of the anchor region without being adjacent to it and are
within 100 bases from both its ends.

b. (DISTANCE < 100) is true for the regions which intersect with the anchor
region and are within 100 bases from both its ends.

c. (UPSTREAM DISTANCE < 100) is true for the regions in the portion of the
genome that fall outside of the anchor region and are within 100 bases
before the start of the anchor region.

d. (UPSTREAM DISTANCE < 100) OR OVERLAPPING is true for the regions in
the portion of the genome between the stop and 100 bases upstream from
the start of the anchor region.

e. (UPSTREAM DISTANCE < 100) OR (DOWNSTREAM DISTANCE < 10) is true
for the regions in the portion of the genome between the start and 100
bases upstream from the start or between the end and 10 bases down-
stream from the end of the anchor region.

f. MINDISTANCE AND (DISTANCE > 100) is true for the closest region(s) to
the anchor provided that its distance is greater than 100 bases (thus, this
predicate fails if the closest region is at distance less than or equal to 100
bases).

g. (FIRST AFTER DISTANCE 100) is true for the closest region(s) to the an-
chor whose distance is greater than 100 bases.

h. (FIRST AFTER DISTANCE 100) AND (DISTANCE < 1000) is true for the
closest region(s) to the anchor whose distance is greater than 100 and less
than 1000 bases.

17

i. (UPSTREAM DISTANCE > 100) AND MINDISTANCE is true for the region(s)
at minimal distance in the upstream portion from the anchor region, pro-
vided that their distance is greater than 100 bases from the anchor.

Note that the predicate (DISTANCE > 100) AND (UPSTREAM DISTANCE < 1000)

is not legal, as downstream regions at arbitrary distances may satisfy the pred-
icate. Similarly for (DISTANCE > 100 AND (DOWNSTREAM DISTANCE < 1000).

The STRANDED option is used to indicate that the genometric join predicate
should be computed only between regions that belong to the same strand (be it
positive or negative; undefined strands should be compared both with positive
and negative as well as undefined strands).

3.4.4 Map

The MAP command maps each individual sample of a dataset, called operand,
to the regions of a specific dataset, called reference. We initially discuss the
map operation without an optional join extension. In such case, the mapping is
performed by first computing the union of the samples of the reference, yielding
to the result regions, and then by computing, for each sample of the operand,
aggregate functions applied to the non-empty intersections of the result regions
with the sample regions; we say that the operand is mapped to the reference.
This operation builds a new genome space whose regions are the reference’s
regions and whose samples contain aggregate properties of the original samples
relative to the new regions.

Let s1 be the union of the reference samples within the dataset S1 and
consider its regions < ri >. Let s2 be the samples of S2 and let rj denote their
regions. Let Ak be attribute names and let gk be aggregate expressions. Let Di
be the multiset of values of the rj region such that ri and rj have non-empty
intersection, and let gk(Di) be the result of applying the aggregate expressiom
gk to each such multiset Di. Then, the MAP operator builds a new dataset S3

such that:

• Every sample s2 of S2 generates a sample s3 of S3, with the same identifier
and metadata; the metadata of s3 include the union of the metadata of
s1 and of s2.

• Regions of S3 have the same coordinates as regions ri of s1;

• Region attributes Ak of S3 corresponding to region coordinate ri take the
value gk(Di).

In particulare, if the operand dataset S2 has n samples, the resulting mapped
dataset S3 will have exactly n samples, irrespective of the number of samples
in S. The syntax is:

<S3> = MAP[_STRANDED] ([<meta-join-pred>,]

<A1> AS <g1>,.. <An> AS <gn>) <S1> <S2>

18

The aggregate COUNT counts, for each reference region, the number of intersect-
ing operand regions. An example of use of map is:

S = MAP(PeakCount AS COUNT) ANNOTATION PEAKS;

Assuming that relevant annotations are expressed as regions of a sample within
the ANNOTATION dataset, the MAP operation counts the peak regions that are
present in the intersections between the annotation regions and the regions of
the samples of the PEAKS dataset. Instead, the example:

S = MAP(Peak AS EXISTS) ANNOTATION PEAKS;

Returns 1 in the annotation regions with at least one peak, and 0 otherwise.
An optional <meta-join-predicate> is used for selecting pairs of samples

of the first and second operand based on their metadata; in such case, the map
operation is applied to the pairs < Si, Sj > such that samples Si of S1 and Sj

of S2 satisfy the join predicate. For instance:

S = MAP(left -> antibody == right -> antibody,

PeakCount AS COUNT) CONTROL PEAK;

The STRANDED option is used to indicate that the intersecting multi-set should
include only regions which belong to the same strand (be it positive or negative;
undefined strands should be compared both with positive and negative strands).

References

[1] ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green
ED, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in
the human genome. Nature. 2012;489(7414):57-74.

[2] Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler
AM, Haussler D. The human genome browser at UCSC. Genome Res.
2002;12:996-1006.

[3] Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: A not-
so-foreign language for data processing. In: Proceedings ACM SIGMOD
2008, NY: ACM; 1099-1110.

[4] Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop distributed file
system. Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST). IEEE Computer Society, Washington,
DC, 2010. 1-10.

[5] Data File Formats [http://genome.ucsc.edu/FAQ/FAQformat.html]

[6] Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L. The distributed anno-
tation system. BMC Bioinformatics 2001;2:7.

19

[7] Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE. The Integrated
Genome Browser: free software for distribution and exploration of genome-
scale datasets. Bioinformatics 2009;25(20):2730-27301.

[8] Ekanayake J, Pallickara S, Fox G. MapReduce for data intensive scientific
analyses. IEEE Fourth International Conference on eScience (eScience ’08).
IEEE Computer Society, Washington, DC, 2008. 277-284.

[9] Zou Q, Li XB, Jiang WR, Lin ZY, Li GL, Chen K. Survey of MapReduce
frame operation in bioinformatics. Brief Bioinform. Feb 2013.

[10] Taylor RC. An overview of the Hadoop MapReduce HBase framework
and its current applications in bioinformatics. BMC Bioinformatics 2010;11
Suppl 12:S1.

[11] Prosad PJ, Bodhe GL. Trends in laboratory information system. Chemom
Intell Lab Syst 2012, 118:187-192.

[12] Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA
1998;95(25):14863-14868.

[13] Müller H, Mancuso F. Identification and analysis of co-occurrence networks
with NetCutter. PLoS One. 2008;3(9):e3178.

[14] Nordberg H, Bhatia K, Wang K, Wang Z. BioPig: a Hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics 2013;29(23):3014-3019.

[15] Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res. 2010;38(6):1767-1771.

[16] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth
G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Sub-
group. The Sequence Alignment/Map format and SAMtools. Bioinformat-
ics 2009;25(16):2078-2079.

[17] Fernndez-Surez XM, Galperin MY. The 2013 Nucleic Acids Research
Database Issue and the online molecular biology database collection. Nu-
cleic Acids Res. 2013, 41(Database issue):D1-D7.

[18] Meyer LR, et. Al. The UCSC Genome Browser database: extensions and
updates 2013. Nucleic Acids Res. 2013;41(Database issue):D64- D69.

[19] Röhm U, Blakeley J. Data management for high-throughput genomics.
CoRR 2009, arXiv:0909.1764 [cs.DB]. Asilomar, CA, USA; ACM. 2009.
1-10.

[20] Bafna V, Deutsch A, Heiberg A, Kozanitis C, Ohno-Machado L, Varghese
G: Abstractions for genomics. ACM Communications 2013, 56(1):83-93.

20

[21] Cereda M, Sironi M, Cavalleri M, Pozzoli U. GeCo++: a C++ library for
genomic features computation and annotation in the presence of variants.
Bioinformatics 2011, 27(9):1313-1315.

[22] Ovaska K, Lyly L, Sahu B, Jänne OA, Hautaniemi S. Genomic Region
Operation Kit for flexible processing of deep sequencing data. IEEE/ACM
Trans Comput Biol Bioinform. 2013;10(1):200-206.

[23] Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 2010;26(6):841842.

21

	Introduction
	Genomic Data Model
	Formal definition
	Multi-region genomic entities

	Genometric Query Language
	General Structure of GMQL
	Operators for Metadata Management
	Metadata Selector
	Metadata Aggregator for Region Values
	Metadata Orderer and Top-k Extractor

	Operators for Region Management
	Region Filter
	Region Cover
	Region Summit

	Operations on Multiple Datasets
	Union
	Difference
	Genometric Join
	Map

