
GenoMetric Query Language (GMQL)

Tutorial

Genomic Computing Group

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

November 9, 2015

Contents

1 Introduction 2

2 Creation and Management of Datasets and Data Samples 2
2.1 Supported Formats . 2
2.2 Sample Metadata . 5
2.3 Dataset Creation . 5
2.4 Listing Datasets and Data Samples 6
2.5 Retrieving GMQL Generated Data 6
2.6 Other Operations . 7

3 Creation and Execution of GMQL Queries 7
3.1 General Tips . 7
3.2 From Problems to GMQL Queries 8
3.3 Loading Data: Select . 8
3.4 Filtering Regions: Project . 9
3.5 Merging Replicas: Cover . 9
3.6 Counting Intersections: Map . 10
3.7 Finding Close Regions: Join . 11
3.8 Saving Results: Materialize . 12
3.9 Full Query, Execution, Results 12

1

1 Introduction

The following tutorial is divided in two parts:

a. how to register, create and manage datasets and data samples for their
GMQL use and deal with supported or custom data formats;

b. how to build a GMQL query from a genomic problem step-by-step, de-
scribing the formulation and execution of its operations.

Note 1.1. Please refer to the QuickStart documentation for system installation
and to the GMQL complete documentation for further information about the
data model and query language.

2 Creation and Management of Datasets and
Data Samples

In order to use GMQL it is necessary to register datasets of the data sample
files that need to be processed, which may have different formats. In GMQL,
many data formats are natively supported; custom formats, which require the
specification of an XML file describing the structure (i.e. schema) of the genomic
region data contained in the corresponding textual tab-delimited column data
files, can be defined as well (see below GTF and tab format description for
details).

Note 2.1. Columns with genomic region coordinates (i.e. chromosome, start,
stop, strand) must be present in the data file at the position defined by the format
(e.g. chromosome, start and stop are often the first three columns in this order);
thus, they must not be specified in the XML data file schema.

2.1 Supported Formats

• Bed Format

The bed format is described at:
http://genome.ucsc.edu/FAQ/FAQformat.html#format1

Files in this format are referenced with ”bed” both for type and exten-
sion. We consider only the first six columns of the format, which orderly
are: Chrom (string), ChromStart (integer), ChromEnd (integer), Name
(string), Score (integer), Strand (string). Only the first three columns
are mandatory; if missing, the Name and Score will be set to null (i.e.
empty), while the strand will be set to undefined (i.e. ”*”). The bed
format adopts the 0-base notation for the genomic region coordinates, i.e.
coordinate counting starts from 0.

• ENCODE Broad Peak Format

The broad peak format is described at:
http://genome.ucsc.edu/FAQ/FAQformat.html#format13

2

http://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://genome.ucsc.edu/FAQ/FAQformat.html#format13

Files in this format are referenced with ”broadPeak” both for type and
extension. The columns of the format orderly are: Chrom (string), Chrom-
Start (integer), ChromEnd (integer), Name (string), Score (integer), Strand
(string), signalValue (float), pValue (float). qValue (float). The broad
peak format adopts the 0-base notation for the genomic region coordi-
nates, i.e. coordinate counting starts from 0.

• ENCODE Narrow Peak Format

The narrow peak format is described at:
http://genome.ucsc.edu/FAQ/FAQformat.html#format12

Files in this format are referenced with ”narrowPeak” both for type and
extension. The columns of the format orderly are: Chrom (string), Chrom-
Start (integer), ChromEnd (integer), Name (string), Score (integer), Strand
(string), signalValue (float), pValue (float). qValue (float), Peak (integer).
The narrow peak format adopts the 0-base notation for the genomic region
coordinates, i.e. coordinate counting starts from 0.

• GTF Format

The GTF format is described at:
http://genome.ucsc.edu/FAQ/FAQformat.html#format4

Files in this format are referenced with ”gtf” both for type and extension.
The first eight columns are fixed; the ninth column has a variable part
consisting of attribute-value pairs; the user should then indicate how these
attributes have to be included in the schema in their exact order. The first
eight columns of the format orderly are: Seqname (it corresponds to the
chromosome; string), Source (string), Feature (string), Start (integer),
End (integer), Score (integer), Strand (string), Frame (integer).

For example, let geneId and transcriptId be attribute-values in column
nine for a set of GTF files; the required schema should be:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<gmqlSchemaCollection name="GLOBAL_SCHEMAS"

xmlns="http://www.bioinformatics.deib.polimi.it/GMQL/">

<gmqlSchema name="GTF_EXAMPLE" type="gtf">

<field type="STRING">source</field>

<field type="STRING">feature</field>

<field type="INTEGER">score</field>

<field type="INTEGER">frame</field>

<field type="STRING">geneId</field>

<field type="STRING">transcriptId</field>

</gmqlSchema>

</gmqlSchemaCollection>

Note that, differently from other formats, the GTF format adopts the 1-
base notation for the genomic region coordinates, i.e. coordinate counting

3

http://genome.ucsc.edu/FAQ/FAQformat.html#format12
http://genome.ucsc.edu/FAQ/FAQformat.html#format4

starts from 1, while our system starts counting region coordinates from 0.
Conversion is done automatically by the system.

• VCF Format

The Variant Call Format is described at:
http://www.1000genomes.org/node/101

Files in this format are referenced with ”vcf” both for type and extension.
The columns of the format are nine in the following order: Chrom (string),
Position (integer), Id (string), Ref (string), Alt (string), Quality (integer),
Filter (string), Info (string), Format (string(s)). The VCF files are quite
complex; we provide a simple support for them by considering all the first
eight columns only. For simplicity, we set the stop position equal to the
start position for all single base mutations. Note that the VCF adopts the
1-base notation for the genomic region coordinates, while our system starts
counting region coordinates from 0. Conversion is done automatically by
the system.

• General Tab Format

This format regards bed-like files composed of a mandatory part and a
custom number of columns.
Files in this format are referenced with ”tab” both for type and extension.
The mandatory part includes three columns: Chrom (string), ChromStart
(integer), ChromEnd (integer); all the others are user-defined. The posi-
tion of the strand column is not fixed; if present, using the name ”strand”,
it is possible to specify which column contains such information. For ex-
ample, supposing that after the three coordinate columns a file contains
two strings regarding, for instance, gene ID and transcript ID, the file
schema should be:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<gmqlSchemaCollection name="GLOBAL_SCHEMAS"

xmlns="http://www.bioinformatics.deib.polimi.it/GMQL/">

<gmqlSchema name="TAB_EXAMPLE" type="tab">

<field type="STRING">geneId</field>

<field type="STRING">transcriptId</field>

</gmqlSchema>

</gmqlSchemaCollection>

Instead, if the fourth column contains the strand string and is followed by
a column with float score value:

...

<gmqlSchema name="TAB_EXAMPLE" type="tab">

<field type="STRING">strand</field>

<field type="FLOAT">scoreValue</field>

</gmqlSchema>

...

4

http://www.1000genomes.org/node/101

2.2 Sample Metadata

Metadata are attributes associated with a whole sample, useful to filter and
associate samples in and among datasets. The metadata file must be in the
same directory of and named exactly as its companion data file; the extension
of this file must be composed of two parts: the data file extension plus the
additional suffix .meta.

Example. Suppose that we want to use in our system the data file myBed.bed.
The (required) companion metadata file must then be named myBed.bed.meta.

Note 2.2. Distinct data sample files belonging to one dataset must not nec-
essarily stay in the same directory; furthermore, a sample file can belong to
multiple datasets.

Metadata files must be simple text files organized as follows:

• Each line of a metadata file must contain an attribute-value pair only.

• The attribute and its value must be separated by a tab.

For example:

cell H1-hESC

antibody AP-2alpha

...

2.3 Dataset Creation

Once at least one data file has been prepared with a companion metadata file,
a dataset can be created by using the command:

repositoryManagerV1 CreateDS <DataSetName> <Schema> <FileURLs>

This command registers a new dataset for GMQL processing. More precisely,
the required parameters are:

• DataSetName: used as a reference to the dataset, both in data manage-
ment and query language commands.

• Schema: data schema to be used for the dataset. If the data schema to
be used is one of the supported standard ”fixed” formats (i.e. bed, broad-
Peak, narrowPeak), then it is enough to specify only the keyword that ref-
erences the schema type (e.g. BED, BROADPEAK, NARROWPEAK).
Otherwise, it is necessary to specify the full path of a user-defined schema
file. Note that the system does not perform any check on the schema when
loading data.

• FileURLs: complete path of each data file composing the dataset. Note
that metadata file must not be listed; they are automatically identified by
name from their companion data file name. If any metadata file is not

5

found, the system notifies an error. Multiple URLs can be specified and
they must be comma separated. It is also possible to specify the complete
path of a directory instead; in this case all files in the directory are added
to the dataset.

In summary, when this command is executed, the operations performed by
the system are:

a. Create a single metadata file in the repository for the entire dataset.

b. Index the single metadata file.

c. Add the URLs listed for the dataset files to the user < DataSetName >
.XML file that the system creates.

d. If the system is set as HDFS (i.e. to work using an Hadoop Distributed
File System), then the files are copied to the HDFS.

e. If the system is set as LOCAL MODE (i.e. to work using local computing
resources), then the files are kept where they are and their URLs are
stored.

2.4 Listing Datasets and Data Samples

After creating and registering a dataset, it is possible to check its presence in
the system, by using the command:

repositoryManagerV1 List all

It returns the list of all datasets present in the system, for example:

MYDATASET1

OTHERDATA

BED_EXPERIMENT1

It is also possible to list the specific data sample files that compose a dataset,
by using the command:

repositoryManagerV1 List <DataSetName>

The full paths of the sample data files are listed, for example:

\home\userName\myExperiment\experiment1.bed

\home\userName\myExperiment\experiment2.bed

\home\userName\secondTest\otherExperiment.bed

2.5 Retrieving GMQL Generated Data

Regardless the GMQL running mode (i.e. Local or MapReduce), all data stored
during a GMQL query processing are included in the GMQL repository. To ac-
cess them, first they must be copied to a user local folder, by using the command:

repositoryManagerV1 CopyDSToLocal <DatasetName> <DestinationLocalFolder>

6

2.6 Other Operations

It is possible to add sample files to an existing dataset, by using the command:

repositoryManagerV1 AddSample <DataSetName> <FileURLs>

It is also possible to delete an entire dataset, or specific sample files, by respec-
tively using the commands:

repositoryManagerV1 DeleteDS <DataSetName>

repositoryManagerV1 DeleteSample <DataSetName> <FileURLs>

Note 2.3. Both operations do not delete the actual data files on the local file
system, but only their created references and copies on the Hadoop distributed
file system, if any. This happens both in local and HDFS mode.

3 Creation and Execution of GMQL Queries

3.1 General Tips

In the following sections we illustrate and discuss how to write queries (i.e.
programs) in GMQL. A few introductory general tips can be useful:

• Unique names. Each dataset must have a unique name within a GMQL
program. Note that datasets registered in the GMQL system (see Sec-
tion 2.3) are considered already defined at the beginning of each GMQL
program; thus, they do not need to be defined in a GMQL program.

• Always end with semicolon. A common error is to forget placing a
semicolon at the end of each GMQL command.

• Beware the case. In GMQL, data attribute and dataset names are
case-sensitive, be careful!

• Selection is necessary. Before doing any GMQL operation, it is neces-
sary to load the data to be processed in the system, by using the SELECT
command (see GMQL complete documentation for more details).

• What is not saved is lost. Only datasets that are specifically saved
with the MATERIALIZE command are saved. All intermediate data are
discarded.

7

3.2 From Problems to GMQL Queries

Every GMQL query is fundamentally an interrogation done on genomic data in
order to solve a (biological) problem. The operations supported by the GMQL
language, used together, are very powerful; however, using the full expressive-
ness of the language can be tricky. The most difficult task is understanding how
to formalize a potential biological question in a form that can be translated in
a set of GMQL operations. There are no fixed rules; thus, in this tutorial, we
consider as an example a possible biological problem that requires to answer the
following high-level query:
”Consider a set of ChIP-seq experiments made on the K562 cell line and a set
of gene bodies. Consider only the ChIP-seq peaks with a score higher than 500.
After merging sample replicates from experiments regarding the same antibody,
in the merged sample of each antibody count the number of peaks intersecting
each gene body. Finally, in each antibody merged sample, for each gene find the
nearest ChIP-seq peak.”
In the following sections we illustrate and discuss all the GMQL operations in-
volved in answering this query, giving also a brief overview of the various options
available.

3.3 Loading Data: Select

Our example requires only two types of genomic data: peaks (i.e enriched bind-
ing regions), obtained by ChIP-seq experiments, and gene bodies. Suppose
that two datasets are already in the system: HG19 ENCODE BED, containing
various bed files from the ENCODE project, and HG19 BED ANNOTATION,
containing some annotation data in bed format. Thus, the first two statements
of our GMQL query are the two SELECTs:

PEAKS = SELECT(dataType == ’ChipSeq’ AND

cell == ’K562’) HG19_ENCODE_BED;

GENES = SELECT(annotation_type == ’gene’ AND

original_provider == ’Ensembl’) HG19_BED_ANNOTATION;

Out of all samples in the considered datasets, these two operations select the
ones that have metadata satisfying the conditions expressed in parenthesis. Note
that the metadata attributes and values that we used in the example depend
on the used datasets, which in this case include ENCODE provided data and
metadata and UCSC provided annotations, respectively. In practice, the created
PEAKS dataset contains the samples that in the HG19 ENCODE BED dataset
have both ”cell K562” and ”dataType ChipSeq” entries in their metadata. Sim-
ilarly, GENES contains only samples present in the HG19 BED ANNOTATION
dataset and having in their metadata both “annotation type” equal to “gene”
and “original provider” equal to “Ensembl”. In our case, PEAKS includes 218
samples, while GENES has only one sample with the list of the gene body
regions. More generally, selection predicates can be built with arbitrary paren-
thesized expressions combining AND, OR and NOT logical operators.

8

3.4 Filtering Regions: Project

F_PEAKS = PROJECT(score > 500) PEAKS;

It is often necessary to filter genomic regions within samples. In GMQL it
is possible to keep only some regions which we are interested in, by using the
PROJECT operator. In our example, we filter out the regions in PEAKS that do
not have a score value higher than an arbitrary threshold (e.g. 500). It is possible
to concatenate conditions using the AND, OR and NOT logical operators. With
PROJECT it is also possible to change the region coordinates, for example
extending them by a constant. For the full spectrum of options see the language
specifications in the GMQL complete documentation.

3.5 Merging Replicas: Cover

Often, selected and filtered samples still contain redundant information. In our
example, for a specific cell line we selected available data samples from experi-
ments made with many different antibodies, on average a couple of samples per
antibody. At this point we are interested in merging the information of samples
obtained using the same antibody. To do so, we make use of the COVER oper-
ator. Roughly speaking, COVER takes as input a group of samples and merges
them in a single sample. The genomic regions in the resulting merged sample
are formed by combining the input regions according to the specific COVER
parameters used. A COVER operation is defined based on a minimum and a
maximum accumulation value, which define the considered minimum and maxi-
mum number of intersecting regions in each specific genomic position. An usage
example in our case is:

C_PEAKS = COVER(1, ANY; GROUP BY antibody) F_PEAKS;

In this example we set the minimum at “1” and maximum with the keyword
“ANY”, which implies no maximum number at all. With these settings, we
obtain the simple union of all the input regions, as shown in Figure 1 for two
samples. We could be more strict and set the minimum to “ALL”. In this case
we would keep only the region parts intersecting in at least N regions, where
N is the number of input data samples involved (i.e. we would keep only the
region parts present in all input samples).

Note the GROUP BY option; without it, all the 218 samples in F PEAKS
would be merged together and C PEAKS would consist of only one sample.
Instead, we first group the samples in the input dataset that have the same value
for the ”antibody” attribute in their metadata, and then the Cover operation
is applied on each obtained sample group, providing as a result 86 different
samples in C PEAKS. In Figure 1 we show a small genomic portion of a group
of the input samples with the same antibody and the resulting output sample.

COVER is a very rich operator with many optional parameters; its full use
requires a careful study of the GMQL complete documentation.

9

Figure 1: Small portion of COVER(1,ANY) result (orange, bottom regions) on
two input samples (blue, top regions).

3.6 Counting Intersections: Map

Once the ChIP-seq data have been prepared, we are ready to use them with
the annotation data. What we have to do is counting, in the merged sample of
each antibody, the number of peaks intersecting each gene body. These types of
operations are easily performed by the MAP operator, which takes as reference
a set of regions in its first input dataset and compares each of them with the
regions in each sample within its second input dataset. In each sample, the
regions intersecting with each reference region are used to calculate a set of
aggregate functions for the reference region. The result is a new dataset with
all the samples in the second input dataset, but each sample includes all the
reference regions, each one with the values of the aggregate functions calculated
on the regions originally included in the sample. For our example query, the
GMQL command to use includes only the Count aggregate function:

M_GENES = MAP(COUNT) GENES C_PEAKS;

Figure 2 shows a small portion of input and output regions of the Map operation
on two samples.

Figure 2: GMQL Map operation. Top (red), gene bodies. Middle (blue), peak
regions from two ChIP-seq samples. Bottom (green), the Map result.

10

In the Map operation several aggregate functions can be used, including
the Average of a specific value of the intersecting regions, as well as the Sum,
Minimum, Maximum, etc.. Note that the regions in the result contain also all
the original information of the reference regions, e.g. the gene ID in our case.
As well, metadata of a result sample contain both the original sample metadata
and the reference sample metadata. As a general rule, when metadata from
different samples are merged, the name of their original sample dataset is added
as a prefix to each resulting metadata attribute to avoid ambiguity (e.g. in our
case resulting metadata contain the attribute ”C PEAKS.antibody”).

3.7 Finding Close Regions: Join

The last operation required by our example query is, for each gene, finding the
nearest ChIP-seq peak. We need to perform the search for each antibody used
to generate the ChIP-seq samples, keeping all the information collected so far.
Problems related to relative distances between genomic regions can be solved
in GMQL by using the genometric JOIN operator. In our example case:

J_PEAKS = JOIN(left->antibody == right->antibody, MINDISTANCE(1),

right_distinct) M_GENES C_PEAKS;

The genometric JOIN works as follows. First, samples from the left and
right operand (i.e. first and second dataset) in input are paired according to
the specified condition (if any) on their metadata; in our case, we pair samples
obtained with the same antibody (first parameter). It is possible to specify no
metadata condition; in this case the Join operation considers the cross product
of the samples in the two input datasets.
Once the sample pairs are formed, a specified genometric operation is performed
on couples of regions in each sample pair. In our case we specified the MINDIS-
TANCE(1) operation; for each region ri in the left operand (i.e in the sample
of the pair from the first input dataset), it finds the region in the right operand
(i.e in the sample of the pair from the second input dataset) at the minimum
distance from ri (Figure 3). All regions that do not satisfy the genometric pred-
icate (i.e. being at minimum distance) are discarded.
Finally, for each pair of samples in input, a new sample is created in output,
containing regions determined according to the last Join parameter specified
and to the pairs of regions found satisfying the genometric predicate. In our
case we specified ”right distinct”, i.e. to keep the regions from the sample in
the second input dataset (”right”), but keeping a single instance (” distinct”)
for each of them if multiple region instances (all with the same coordinates)
appear for the same region. All values of all the regions from the right input
sample (i.e. the sample in the second input dataset) that contributed with the
region from the left input sample (i.e. the sample in the first input dataset) to
satisfy the genometric join predicate are added to the output region; thus, in
our case all obtained regions contain at least one gene ID.

As an example, a small portion of input and output samples is shown in
Figure 3. In the second operand sample (a ChIP-seq sample in our case), the

11

first region (peak) from the left is not at minimal distance from any region
(gene) in the first operand sample (a gene annotation sample in our case); thus
it is discarded. The second ChiP-seq peak intersects a gene; thus, the distance
between the two is the shortest possible. Finally, the third peak from the left is
the closest for the rightmost gene. The last two peaks are therefore included in
the result sample.

Figure 3: Join operation. Top (red), gene bodies from a sample in the first
input dataset. Middle (green), ChIP-seq peaks from a sample in the second
input dataset. Bottom (blue), regions in the result sample.

3.8 Saving Results: Materialize

It is important to remember that all datasets defined in a GMQL query are, by
default, temporary. To see and preserve the content of any dataset generated
during a GMQL query, the dataset must be materialize. Thus, at the end of
our example, we have to write, for instance:

MATERIALIZE J_PEAKS;

It saves the content of J PEAKS and registers the J PEAKS dataset in the
system to make it seamlessly usable in other GMQL queries. There is no limit
to the number of materialization in a query; every intermediate dataset can be
saved to check its content. However, the Materialize operation is time expensive;
for best performance save the relevant data only.

3.9 Full Query, Execution, Results

The complete GMQL query that solves the problem can be obtained by adding
up everything that has been discussed so far. The complete listing for such
query is the following:

PEAKS = SELECT(dataType == ’ChipSeq’ AND

cell == ’K562’) HG19_ENCODE_BED;

GENES = SELECT(annotation_type == ’gene’ AND

original_provider == ’Ensembl’) HG19_BED_ANNOTATION;

F_PEAKS = PROJECT(score > 500) PEAKS;

C_PEAKS = COVER(1, ANY; GROUP BY antibody) F_PEAKS;

M_GENES = MAP(COUNT) GENES C_PEAKS;

J_PEAKS = JOIN(left->antibody == right->antibody, MINDISTANCE(1),

right_distinct) M_GENES C_PEAKS;

MATERIALIZE J_PEAKS;

12

A GMQL query like this must be saved as simple text file with extension .gmql
to work properly. To execute a GMQL query, use the command:

GMQLScriptManager CompileRun <LOCAL/MAPREDUCE> <queryURL>

where queryURL is the complete path of the text file containing the GMQL
query to be executed, the LOCAL option makes using local computing re-
sources, whereas the MAPREDUCE option makes the query to be executed
in the Hadoop system, if any has been installed to work with the GMQL sys-
tem (see the QuickStart documentation). This command executes the GMQL
query and registers the results in the system. Be aware that, in order to avoid
ambiguity, query and user name, as well as day and time of the query execution
start, are added to the name of each materialized dataset. The result files are
saved in the Hadoop file system if the query is executed in map-reduce mode, or
in the folder .../userName/data/results/ in the GQML directory if the query
is executed in local mode. In any case, it is possible to copy any dataset in a
folder of the local file system by using the command:

GMQLScriptManager CopyDsToLocal <DatasetName> <DestinationURL>

Results are saved in GTF format, which we stress adopts the 1-base nota-
tion for the genomic region coordinates (i.e. coordinate counting starts from
0). Thus, if a data format adopting a 0-base notation (e.g. bed, broadPeak,
narrowPeak) is used as input to a GMQL query, the left coordinate of each
genomic region in the GMQL output result is suitably changed to comply with
the 1-base notation of the output GTF format.

When possible, result values are stored in the GTF default columns; for
example a value associated with the name ”score” will be stored in the score
GTF column. All other resulting attribute-value pairs are included in the last
(ninth) column of the GTF format.

13

	Introduction
	Creation and Management of Datasets and Data Samples
	Supported Formats
	Sample Metadata
	Dataset Creation
	Listing Datasets and Data Samples
	Retrieving GMQL Generated Data
	Other Operations

	Creation and Execution of GMQL Queries
	General Tips
	From Problems to GMQL Queries
	Loading Data: Select
	Filtering Regions: Project
	Merging Replicas: Cover
	Counting Intersections: Map
	Finding Close Regions: Join
	Saving Results: Materialize
	Full Query, Execution, Results

