Specification of GMQL Version 2

Bio-Informatics Group, DEIB, Politecnico di Milano

23/10/2016
Contents
I Toch [Motivations
2 Region-based Data Model with Metadatal
2.1 Motivationl oo
ErEmm

3 GenoMetric Query Language

|3.1 General Properties|

[F "Domain-Specific Operations|

6

Utility Operations|

(7

Full Biological Example]

1 Introduction and Motivations

A new technology for reading the DNA, called Next Generation Sequenc-
ing (NGS), is changing biological research and will change medical practice,
thanks to the low-cost availability of millions of whole genome sequences
of a variety of species, and most important of humans. Huge repositories
of sequence information are being collected by large consortia of research
laboratories by using NGS; among them, ENCODE [12], TCGA [35], the
1000 Genomes Project [1I] and the 100,000 Genomes Projecﬂ These se-
quences can be assembled with specific experimental data produced at the
various research or clinical centers, opening new opportunities for biological
discovery and for personalized medicine.

Several organizations are considering genomics at a global level. Global
Alliance for genomics and Healtfﬂ is a large consortium of over 200 research
institutions with the goal of supporting voluntary and secure sharing of
genomic and clinical data; their work on data interoperability is producing
a data conversion technologyﬂ Google recently provided an API to store,
process, explore, and share DNA sequence reads, alignments, and variant
calls, using Google’s cloud infrastructureﬂ Parallel frameworks are used to
support genomic computing, including Vertica (used by Broad Institute and
NY Genome Center) and SciDB (used by NCBI for storing the data of the
1000 Genome project [I]).

So far, the bio-informatics research community has been mostly chal-
lenged by primary analysis (production of sequences in the form of shorts
DNA segments, or "reads”) and secondary analysis (alignment of reads to a
reference genome and search for specific features, such as variants/mutations
and peaks of expression); but the most important emerging problem is the
so-called tertiary analysts, concerned with multi-sample processing, annota-
tion and filtering of variants, and genome browser-driven exploratory anal-
ysis [25]. While secondary analysis targets raw data in output from NGS
processors by using specialized methods, tertiary analysis targets processed
data in output from secondary analysis and is responsible of sense making,
e.g., discovering how heterogeneous regions interact with each other.

The GenData 2020 research project was conceived to address this chal-
lenge, by enabling queries and analysis of processed genomic dataﬂ The

"http:/ /www.genomicsengland.co.uk/

2 http://genomicsandhealth.org/

3 http://gadgh.org/# /api
“https://cloud.google.com/genomics/
®http://www.bioinformatics.deib.polimi.it/gendata/

project’s main results so far are a Genomic Data Model (GDM), which
encodes processed data in terms of their regions and metadata, and a Geno-
Metric Query Language (GMQL) for extracting regions of interest from
experiments and for computing their properties, with high-level operations
for manipulating regions and for measuring their distances [20].

The most relevant and, to the best of our knowledge, original aspects of
GenData 2020 is the targeting of the project towards heterogeneous pro-
cessed data rather than raw data. World-wide genomic repositories already
contain huge amounts of processed data, and actually their value stems from
the certification of high-quality processing. While processed data are much
smaller than raw data, they can be considered as “big data”, because each
processed file can contain thousands or even millions of genomic regions. In
the GenData 2020 repository structure, we show that thousands of files
can be extracted from the repositories and organized within one dataset,
that can be simply referenced by name in GMQL.

Another unique aspect of GenData 2020 is the inclusion of metadata
in the GDM model and of metadata management in the GMQL query lan-
guage. Fach dataset includes in its metadata all known information about
each sample (from the sample’s preparation up to the patient’s phenotype.)
GMQL progressively computes both the regions and the metadata of re-
sulting samples. Thus, result samples of every query carry their meta-data,
linking them to their contributing input samples, as an indication of data
provenance; this is very powerful, e.g. for building genotype-phenotype
associations.

The GenData 2020 implementation uses cloud computing. Specifically,
Version 1 of the system, developed between 2013 and 2014, translates GMQL
to Pig [6] in the context of Hadoop 1 HDFS, while Version 2 of the system,
developed in 2015, uses the Spark [7] and Flink [4] frameworks as supported
within Hadoop YARN [I6]; the need of cloud architectures for genomics is
advocated by [30]. The expressive power and flexibility of GenData 2020’s
data model (GDM) and query language (GMQL) are demonstrated in [20],
where we show four very different genomic use casesﬁ GenData 2020 focuses
on tertiary data analysis; a similar approach is advocated by Paradigm4, a
companyﬂwhose products include genomic adds-on to SciDB [25]. They also
concentrate on the tertiary analysis, but they advocate the use of specialized
databases rather than cloud computing.

SFinding ChIP-seq peaks in promoter regions; finding distal bindings in transcription
regulatory regions; associating transcriptomics and epigenomics; finding somatic muta-
tions in exons.

"Founded by this year’s Turing award Mike Stonembraker.

2 Region-based Data Model with Metadata

The Genomic Data Model (GDM) is based on the notions of datasets and
samples; datasets are collections of samples, and each sample consists of
two parts, the region data, which describe portions of the DNA and their
features, and the metadata, which describe general properties of the sample.

2.1 DMotivation

Processed data have a variety of file formats, and typically lack an attribute-
based organization. GDM provides a schema to regions, thus it makes data
self-describing, as advocated by Jim Gray [15]; however, we don’t include
data into a database, so as to preserve the possibility for biologists to work
with their usual file-based tools.

The schema has a fixed part that guarantees the comparability of regions
produced by different kinds of processing, and then a variable part describing
the features produced by the various kinds of processing. Although DNA
regions are strings of nucleotides{ﬂ we instead associate them with a list
of one or more features, where each feature is produced by secondary data
analysis.

Due to the lack of agreed standards for metadata, we model them as free
attribute-value pairs; we expect metadata to include at least the experiment
type, the sequencing and analysis method used for data production, the cell
line, tissue, experimental condition (e.g., antibody target) and organism se-
quenced; in case of clinical studies, individual’s descriptions including phe-
notypes. Attributes may have multiple values (e.g., the Disease attribute
can have both values ’Cancer’ and ’Diabetes’). Hundreds of datasets and
thousands of samplesﬂ can be queried thanks to the GDM model.

2.2 Definition

A genomic region r is a portion of the genome defined by the quadruple
of values < chr,left,right,strand >, called region coordinates, where
chr is the chromosome, le ft and right are the two ends of the region along

8DNA can be abstracted as a string of billions of nucleotides (represented by the letters
A,C,G,T) enclosed within chromosomes (23 in humans), which are disconnected intervals
of the string.

9We currently store in GenData 2020 most of ENCODE [12] and TCGA [35] pro-
cessed data.

the DNA Coordinateﬂ strand represents the direction of DNA readingiﬂ
encoded as either + or —, and can be missing (encoded as *)H Formally, a
sample s is a triple < id, R, M > where:

e id is the sample identifier of type long.

e R is the set of regions of the sample, built as pairs < ¢, f > of co-
ordinates ¢ and features f; coordinates are records of four fixed
attributes chr, left, right, strand which are respectively typed
string, long, long, char; features are records of typed attributes;
we assume attribute names of features to be different, and their types
to be any of char, string, int, long, double, Boolean (GDM
types are available both in Java, Scala, and in the Flink, Spark and
Pig frameworks). The region schema of s is the list of attribute
names used for the identifier, the coordinates and the features.

e M is the set of metadata of the sample, built as attribute-value pairs
< a,v >, where we assume the type of each value v to be string.
The same attribute name a can appear in multiple pairs of the same
sample (in which case, we say that a is multi-valued).

A dataset is a collection of samples with the same region schema and with
features having the same types; sample identifiers are unique within each
dataset.

2.3 Examples

Each dataset is stored within GenData 2020 using two tables, one for
regions and one for metadata; an example of the two tables for representing
a particular experiment, called ChIP-seq, is shown in Fig. Note that
the region value has an attribute p_value of type real (representing how
significant is the calling of the peak of that genomic region in the ChIP-
seq experiment); note also that the id attribute is present in both tables;

10Species are associated with their reference genome; DNA samples are aligned to these
references, hence referred to the same system of coordinates; for humans, several references
were progressively defined, for instance hg18, hg19 and hg20/GRCh38.

NDNA is made of two strands rolled-up together in anti-parallel directions, i.e., they
are read in opposite directions by the biomolecular machinery of the cell.

12 According to the University of California at Santa Cruz (UCSC) notation, we
use 0-based, half-open inter-base coordinates, i.e., the considered genomic sequence is
[left,right). In this coordinate system, left and right ends can be identical (e.g., when
the region represents an insertion in the reference), or consecutive (e.g., when the region
represent a single nucleotide polymorphism.

id, (chr, left, right, strand), (p-value)
(chr1, 21070, 22375, *), (0.00025)

(chr1, 22700, 24300, *), (0.00057)
(chr2, 51050, 52903, *), (0.01500)
(chr1, 20550, 21900, *), (0.01204)
(chr2, 51700, 53140, *), (0.00020)

1,
1,
1,
2,
2,
id,

attribute, value
1, antibody_target, H3K4me1
1, cell, K562
1, data_type, ChiP-seq
1, treatment, none
2, antibody_target, CTCF
2, cell, K562
2, data_type, ChiP-seq

chrl chr2

0.00025 0.00057 0.01204 id=1
id=2
0.01204 0.00020

Figure 1: Regions and metadata of a dataset consisting of two samples.

it provides a many-to-many connection between regions and metadata of a
sample; e.g., sample 1 has 5 regions and 4 metadata attributes, sample 2
has 4 regions and 3 metadata attributeﬂ The regions of the two samples
are within chromosomes 1 and 2 of the DNA, and both are not stranded.
While the above example is simple, GDM supports the schema encoding
of any processed data type, e.g., files for mutations, ChIP-seq, DNA-seq,
RNA-seq, ChIA-PET, VCF, and SAM/BAM formats. We use GDM also
for modeling annotations, i.e. regions of the genome with known properties
(such as genes, with their exons and introns). Schema encodings and one
exemplar instance of DNA-seq and RNA-seq data samples are described in

Fig. 2

BNote that the quintuple (id, chr, left, right, strand) is not a key of the region
table (because a sample can have multiple regions with the same coordinates), and sim-
ilarly the pair (id, attribute) is not a key of the metadata table (because metadata
attributes can be multi-valued).

DNA-seq (MUTATIONS)
(id, (chr,left,right,strand),
(A, G, C, T, del, ins, inserted, ambiguous,
Max, Error, A2T, A2C, A2G, C24A, C2G, C2T))
(1, (chr1l, 917179, 917180, *),
(0, 0, 0, 0, 1, 0, 2.7, 7.7,
o, 0, 0, 0, 0, 0, 0, 0))

RNA-seq (GENE EXPRESSIONS)
(id, (chr,left,right,strand), (source, type, score,
frame, genelD, transcriptID, RPKM1, RPKM2, iIDR))
(1, (chr8, 101960824, 101964847, *),
(’GencodeV10’, ’transcript’, 0.026615, NULL,
’ENSG00000164924.11°, ’ENST00000418997.17,
0.209968, 0.193078, 0.058))

Figure 2: Examples of schema with one instance for two different types of
processed data; coordinates and features are enclosed within two records.

3 GenoMetric Query Language

A GMQL query (or program) is expressed as a sequence of GMQL operations
with the following structure:

<variable> = operation(<parameters>) <variables>

where each variable stands for a GDM dataset. Operations are either unary
(with one input variable), or binary (with two input variables), and construct
one result variable.

3.1 General Properties

GMQL operations form a closed algebra: results are expressed as new
datasets derived from their operands. All operations produce a result dataset
consisting of several samples, whose identifiers are either inherited by the
operands or generated by the operation. Each operation separately applies
to metadata and to regions; the region-based part of an operation com-
putes the result regions, the metadata part of the operation computes the
associated metadata so as to trace the provenance of each resulting sample;
identifiers preserve the many-to-many mapping of regions and metadata as
discussed in Section 2.3

Most GMQL operations, although defined upon two connected data
structures, are extension of classic relational algebra operations, twisted
to the needs of genomics; they are denoted as relational. Three domain-
specific operations, called COVER, (distal) JOIN and MAP, significantly extend
the expressive power of classic relational algebra.

The main design principles of GMQL are relational completeness and or-
thogonality. Completeness is guaranteed by the fact that classical algebraic
manipulations are all supported, suitably extended and adapted to comply
with region-based calculus. Orthogonality is achieved because no operator
can be defined as a suitable expression of all other operators; note that the
classic abstractions of grouping is supported, with the same semantics, in
the unary operations GROUP and COVER, and similarly joining is supported,
with the same semantics, in the binary operations JOIN, MAP, MERGE and
DIFFERENCE.

Compared with languages which are currently in use by the bioinfor-
matic community, GMQL is declarative (it specifies the structure of the
results, leaving its computation to each operation’s implementation) and
high-level (one GMQL query typically substitutes for a long program which
embeds calls to region manipulation libraries); the progressive computation
of variables resembles other algebraic languages (e.g. Pig Latin, [6]). For
all these features, GMQL may inspire a change of paradigm in genomics,
along a direction that was indicated long ago by Edward T. Codd’s seminal
papers.

3.2 Predicates Evaluation

Parameters of several operations include predicates, used to select and join
samples; predicates are built by arbitrary Boolean expressions of simple
predicates, as it is customary in relational algebra. The region attributes
can refer positionally to the schema, i.e., $0 denotes the first attribute $1to
the second, and so on. Predicates are either evaluated in the context of
regions or of metadata, as follows:

e Predicates on metadata have an existential interpretation over sam-
ples: they select the entire sample if it contains some metadata at-
tributes such that the predicate evaluation on their values is true. For-
mally, for each sample, a simple predicate p expressed as (A comp V')
on metadata M is defined as:

p < I (a;,v;) € M : (a; = A) A (v; comp V)

When a predicate on metadata uses an attribute which is missing, the
predicate is unknown; we use three-value (i.e. true, false, unknown)
logic for metadata predicates p, and we select samples s for which
p(s) is true given the above interpretation. The special predicate
missing(A) is true if the attribute A is not present in M.

e Predicates on regions have a classic interpretation: they select the
regions where the predicate is true. Legal predicates must use the at-
tributes in the region’s schema; when a predicate is illegal, the query
is also illegal, and compilation failsFE] The evaluation of predicates in-
volving two or more regions (essentially join predicates) is defined only
when regions have compatible strands; positive and negative strands
are incompatible, but they are both compatible with a missing strand.

3.3 Sintactic Conventions

Operations have the general syntax:

OUT=0PERATOR (parm-1;..parm-N [; n-parm-1]..[;n-parm-M]) IN-1 [IN-2];
Where

e All operations produce an output OUT; unari operations apply to a
single dataset (IN-1), binary operations apply to two datasets (IN-1
and IN-2).

e parm denotes default unnamed parameters for the OPERATOR. The se-
mantic of these parameters is inferred from their position.

e n-parm: optional parameters that have to be specified in the form of
pairs name: value. The semantics of each one of these parameters
is inferred from its name, therefore their position is irrelevant.

Attributes exist in metadata and regiopns, denoted as follows:

e <attribute-name>: any-string(.any-string)* for a generic meta-
data attribute name.

e <field-name> : any-string(.any-string)* for a generic attribute
in the region schema.

14Region predicates may include metadata attributes, but in such case they are legal iff
the metadata attribute is single-valued and not null, and invalid otherwise; in such case,
for a given sample, metadata attributes are equivalent to constant values.

10

The prefix 1ist denotes a comma-separated list of elements, e.g. <list-field-name>
or <list-attribute-name>. For what concerns case sensitivity:

e Region and field names are case sensitive: e.g. pvalue != pValue !=
PVALUE

e GMQL keywords are not case sensitive: e.g. UPSTREAM == upstream
==UpStReAm

4 Relational GMQL Operations

We next describe relational operations; they include six unary operations
(SELECT, PROJECT, EXTEND, MERGE, GROUP and SORT) and two binary opera-
tions (UNION and DIFFERENCE).

4.1 Select
<82> = SELECT([<pm>] [;] [region: <pr>][;][semijoin: <ps>]) <Si>;
where:

e <pm>: Expression whose atomic predicates are in the form: attribute-
name (== | > | < | >= | <=) (value | decimalNumber). Atomic
predicates are concatenated by means of the OR, AND and NOT op-
erators; e.g. antibody==CTCF AND NOT (weight > 100 OR disease
== cancer).

e <pr>: Expression whose atomic predicates are in the form: field-name
(==|>]<|>=]<=) (value | decimalNumber). Atomic predi-
cates are concatenated by means of the OR, AND and NOT operators;
e.g. pvalue < 0.001 OR label==promoter

e <ps>: Semi-join expression in the form: <list-attribute-name> IN
<dataset>; e.g. antibody,cell,treatment NOT IN HG_BROAD

It keeps in the result all the samples which existentially satisfy the pred-
icate on metadata <pm> and then selects those regions of selected samples
which satisfy the predicate on regions <pr>; a sample is legal also when it
contains no regions as result of a selection. Identifiers of selected samples of
the operand S1 are assigned to the result S2.

Semi-join clauses are used to further select samples; they have the
syntax: <A1>, .., <An> IN <extV>. Each attribute occurrence Ai corre-
sponds to a predicate p(a;, aj), where a; and a; are attributes with the same

11

name. a; belongs to the schema of A, a; to the schema of extV. The pred-
icate is true for a given sample s; of S1 with attribute a; iff there exists a
sample in the variable denoted as extV with an attribute a; and the two
attributes a; and a; share at least one value. Formally, if Mg denotes the
metadata of samples of extV, then:

plag,a;) <= 3 (a;,v;) € My, (aj,v;) € Mg : v; = vj

A semi-join clause can be constructed as the conjunction of the above simple
metadata predicates that refer to the same variable extV. Semi-joins are used
to connect variables, e.g., in the example below:

OUT = SELECT(semijoin: antibody_target IN EXP2) EXP1;

samples of EXP1 are selected only if they have the same antibody_target
value as in at least one sample of EXP2.

4.2 Project

<82> = PROJECT([<Ar1>, .., <Arm>]
[;] [metadata: [<Am1>, .., <Amn>]
[;][region_update: <Url> AS <f1>, .., <Urh> AS <fh>]

[;] [metadata_update: <Um1> AS <h1>, .., <Umk> AS <fk>]) <S1>;

It keeps in the result the metadata (Am) and region (Ar) attributes expressed
as parameter§’| It can also be used to build new attributes as scalar ex-
pressions fi (e.g., for metadata the age from the birthdate; for regions,
the length of a region as the difference between its right and left ends).
If the name of existing schema attributes are used, the operation updates
region attributes to new values. Identifiers of the operand S1 are assigned
to the result S2.

4.3 Extend
<S2> = EXTEND(<Am1> AS <gl1>, .., <Amn> AS <gn>) <S1>;
It generates new metadata attributes Am as result of aggregate functions g

applied to region attributes; aggregate functions are applied sample by sam-
ple, and resulting tuples are triples with the sample identifier, the attribute

15 A syntactic variant (using the keywords ALLBUT) allows to specify only the attributes
that are removed from the result; this variant is very useful with datasets having many
region attributes.

12

name Am, and the computed aggregate value. The supported aggregate func-
tions include COUNT (with no argument), BAG (applicable to attributes of any
type) and SUM, AVG, MIN, MAX, MEDIAN, STD (applicable to attributes of
numeric types). E.g., in the example below:

OUT = EXTEND(RegionCount AS COUNT, MinP AS MIN(Pvalue)) EXP;

for each sample of EXP, two new metadata attributes are computed, RegionCount
as the number of sample regions, and MinP as the minimum Pvalue of the
sample regions.

4.4 Group

<82> = GROUP([<Am1>, .., <Amn>]
[;] [meta_aggregate: <Gm1> AS <gi1>, .., <Gmn> AS <gn>]
[;][region_group: <Ar1>, .., <Arn>]
[;] [region_aggregate: <Gri> AS <gl1>, .., <Grn> AS <gn>]) <S1>;

It is used for grouping both regions and metadata according to distinct val-
ues of the grouping attributes. For what concerns metadata, each distinct
value of the grouping attributes is associated with an output sample, with
a new identifier explicitly created for that sample; samples having missing
values for any of the grouping attributes are discarded. The metadata of
output samples, each corresponding a to given group, are constructed as
the union of metadata of all the samples contributing to that group; conse-
quently, metadata include the attributes storing the grouping values, that
are common to each sample in the group. New grouping attributes Gm are
added to output samples, storing the results of aggregate function evalua-
tions over each group. Examples of typical metadata grouping attributes are
the Classification of patients (e.g., as cases or controls) or their Disease
values.

When the grouping attribute is multi-valued, samples are partitioned by
each subset of their distinct values (e.g., samples with a Disease attribute
set both to ’Cancer’ and ’Diabetes’ are within a group which is distinct
from the groups of the samples with only one value, either ’Cancer’ or
’Diabetes’). Formally, two samples s; and s; belong to the same group,
denoted as s;v45s;, if and only if they have exactly the same set of values for
every grouping attribute A, i.e.

sivasj < {v[3(4,v) € Mi} = {v[3(4,v) € Mj}

Given this definition, grouping has important properties:

13

o reflexive: s;v48;
e commutative: s;748; <= $;748;
e transitive: SiYASj N\ SEYAS; <= SKVASj

When grouping applies to regions, by default it includes the grouping at-
tributes chr, left, right, strand; this choice corresponds to the biolog-
ical application of removing duplicate regions, i.e. regions with the same
coordinates, possibly resulting from other operations, and ensures that the
result is a legal GDM instance. Other attributes may be added to grouping
attributes (e.g., RegionType); aggregate functions can then be applied to
each group. The resulting schema includes the attributes used for grouping
and possibly new attributes used for the aggregate functions. The following
example is used for calculating the minimum Pvalue of duplicate regions:

OUT = GROUP(Pvalue AS MIN(Pvalue)) EXP;

4.5 Merge
<S2> = MERGE ([groupby: <AM1>, ..,<AMn>]) <S1>;

It builds a dataset consisting of a single sample having as regions all the
regions of the input samples (without altering their coordinates, even when
overlapping) and as metadata the union of all the attribute-values of the
input samples. When a GROUPBY clause is present, the samples are parti-
tioned by groups, each with distinct values of grouping metadata attributes
(i.e., homonym attributes in the operand schemas) and the merge operation
is separately applied to each group, yielding to one sample in the result for
each group, as discussed in Section [4.4]

4.6 Order

<82> = ORDER([<Am1> [DESC], .., <Amn> [DESC]]
[;][meta_top: <k> | [;] meta_topg: <k>]
[;] [region_order: <Ari> [DESC], .., <Arn> [DESC]]
[;][region_top: <k> | [;] region_topg: <k>]) <S1>;

It orders either samples, or regions, or both of them; order is ascending as

default, and can be turned to descending by an explicit indication. Sorted
samples or regions have a new attribute Order, added to either metadata, or

14

regions, or both of them; the value of Order reflects the result of the sorting.
Identifiers of the samples of the operand S1 are assigned to the result S2.
The clause TOP <k> extracts the first k samples or regions, the clause TOPG
<k> implicitly considers the grouping by identical values of the first n — 1
ordering attributes and then selects the first & samples or regions of each
group. The operation:

OUT = ORDER(RegionCount; meta_top: 5;
region_order: MutationCount DESC; region_top: 7) EXP;

extracts the first 5 samples on the basis of their region counter and then,
for each of them, 7 regions on the basis of their mutation counter.

4.7 Union
<83> = UNION() <S1> <S2>;

It is used to integrate possibly heterogeneous samples of two datasets within
a single dataset; each sample of both input datasets contributes to one
sample of the result with identical metadata and merged region schema.
New identifiers are assigned to each sample.

Two region attributes are considered identical if they have the same
name and type; the merging of two schemas is performed by projecting the
schema of the second dataset over the schema of the first one. Fields of the
first dataset which are missing in the second one are set to NULL value, for all
the regions of the second operator. For what concerns metadata, attributes
are prefixed with the strings LEFT or RIGHT so as to trace the dataset to
which they refer.

4.8 Difference

<S3> = DIFFERENCE([joinby: <Attl>, .., <Attn>]) <S1> <S52>;

This operation produces a sample in the result for each sample of the first
operand S1, with identical identifier and metadata. It considers all the
regions of the second operand, that we denote as negative regions; for each
sample s1 of S1, it includes in the corresponding result sample those regions
which do not intersect with any negative region.

When the JOINBY clause is present, for each sample s1 of the first dataset
S1 we consider as negative regions only the regions of the samples s2 of S2
that satisfy the join condition. Syntactically, the clause consists of a list of

15

attribute names, which are homonyms from the schemas of S1 and of S2;
the strings LEFT or RIGHT that may be present as prefixes of attribute names
as result of binary operators are not considered for detecting homonyms. We
formally define a simple equi-join predicate a; == a;, but the generalization
to conjunctions of simple predicates is straightforward. The predicate is true
for given samples sl and s2 iff the two attributes share at least one value,

e.g.

plai,a;) <= 3 (a;,v;) € M, (aj,v5) € Ma : v; = v;
The operation:

OUT = DIFFERENCE(joinby: antibody_target) EXP1 EXP2;

extracts for every pair of samples s1,s2 of EXP1 and EXP2 having the
same value of antibody_target the regions that appear in s; but not in ss;
metadata of the result are the same as the metadata of s;.

5 Domain-Specific Operations

We next focus on domain-specific operations, which are more specifically re-
sponding to genomic management requirements: the unary operation COVER
and the binary operations MAP and JOIN.

5.1 Cover

<S2> = COVER/FLAT/SUMMIT/HISTOGRAM (<minAcc>, <maxAcc>
[; groupby: <Am1>, .., <Amn>]
[; aggregate: <Arl> AS <gil>, .., <Arn> AS <gn>]) <S1>;

The COVER operation responds to the need of computing properties that
reflect region’s intersections, for example to compute a single sample from
several samples which are replicas of the same experiment, or for dealing with
overlapping regions (as, by construction, resulting regions are not overlap-
ping.)

Let us initially consider the COVER operation with no grouping; in such
case, the operation produces a single output sample, and all the metadata
attributes of the contributing input samples in S1 are assigned to the re-
sulting single sample s in S2. Regions of the result sample are built from
the regions of samples in S1 according to the following condition:

16

e Each resulting region r in S2 is the contiguous intersection of at least
minAcc and at most maxAcc contributing regions r; in the samples of
51[®} minAcc and maxAcc are called accumulation indexed!’|

Resulting regions may have new attributes Ar, calculated by means of ag-
gregate expressions over the attributes of the contributing regions. Jaccard
Indexele are standard measures of similarity of the contributing regions
r;, added as default region attributes. When a GROUPBY clause is present,
the samples are partitioned by groups, each with distinct values of group-
ing metadata attributes (i.e., homonym attributes in the operand schemas)
and the cover operation is separately applied to each group, yielding to one
sample in the result for each group, as discussed in Section (4.4

For what concerns variants:

e FLAT returns the union of all the regions which contribute to the COVER
(more precisely, it returns the contiguous region that starts from the
first end and stops at the last end of the regions which would contribute
to each region of the COVER).

e SUMMIT returns only those portions of the result regions of the COVER
where the maximum number of regions intersect (more precisely, it
returns regions that start from a position where the number of in-
tersecting regions is not increasing afterwards and stops at a position
where either the number of intersecting regions decreases, or it violates
the max accumulation index).

e HISTOGRAM returns the nonoverlapping regions contributing to the
cover, each with its accumulation index value, which is assigned to
the AccIndex region attribute.

Example. Fig. |3|shows three applications of the COVER operation on three
samples, represented on a small portion of the genome; the figure shows the

16\When regions are stranded, cover is separately applied to positive and negative
strands; in such case, unstranded regions are accounted both as positive and negative.

"The keyword ANY can be used as maxAcc, and in this case no maximum is set (it is
equivalent to omitting the maxAcc option); the keyword ALL stands for the number of
samples in the operand, and can be used both for minAcc and maxAcc. Cases when maxAcc
is greater than ALL are relevant when the input samples include overlapping regions.

18 The JaccardIntersect index is calculated as the ratio between the lengths of the
intersection and of the union of the contributing regions; the JaccardResult index is
calculated as the ratio between the lengths of the result and of the union of the contributing
regions.

17

Sample 1

Sample 2

Sample 3

Min 2 Max 2

Min 1 Max 2

Min 2 Max 3

Figure 3: Accumulation index and COVER results with three different minAcc
and maxAcc values.

values of the accumulation index and then the regions resulting from setting
the minAcc and maxAcc parameters respectively to (2,2), (1,2), and (2, 3).

The following COVER operation produces output regions where at least 2
and at most 3 regions of EXP overlap, having as resulting region attributes
the min pValue of the overlapping regions and their Jaccard indexes; the
result has one sample for each input cell.

RES = COVER(2, 3; groupby: cell; aggregate:
pValue AS MIN(pValue)) EXP;

5.2 Map
<S3> = MAP([<Ari> AS <gi1>, .., <Arn> AS <gn>]
[;]1[joinby: <Am1>, .., <Amn>]) <S1> <S2>;

MAP is a binary operation over two datasets, respectively called reference
and experiment. Let us consider one reference sample, with a set of ref-
erence regions; the operation computes, for each sample in the experiment,
aggregates over the values of the experiment regions that intersect with each
reference region; we say that experiment regions are mapped to reference re-
gions. The operation produces a matrix structure, called genomic space,

18

where each experiment sample is associated with a row, each reference re-
gion with a column, and each matrix row is a vector of numberﬂ Thus, a
MAP operation allows a quantitative reading of experiments with respect to
the reference regions; when the biological function of the reference regions
is not known, the MAP helps in extracting the most interesting regions out
of many candidates.

We first consider the basic MAP operation, without JOINBY clause. For
a given reference sample s, let R be the set of its regions; for each sam-
ple sy of the second operand, with sy =< idy, Ra, My > (according to the
GDM notation), the new sample s3 =< ids, R3, M3 > is constructed; ids
is generated from id; and idﬂ the metadata M3 are obtained by merging
metadata M; and Ma, and the regions R3 = {< c3, f3 >} are created such
that, for each region r; € Ry, there is exactly one region r3 € Rj3, having the
same coordinates (i.e., c3 = ¢1) and having as features f3 obtained as the
concatenation of the features f; and the new attributes computed by the
aggregate functions g specified in the operation; such aggregate functions
are applied to the attributes of all the regions 73 € Ry having a non-empty
intersection with r1. A default aggregate Count counts the number of re-
gions r9 € Ry having a non-empty intersection with ;. For each region, a
field named count_LeftDSName RighDSName is added, storing the result of
Count aggregate. The operation is iterated for each reference sample, and
generates a sample-specific genomic space at each iteration.

When the JOINBY clause is present, for each sample s1 of the first dataset
S1 we consider the regions of the samples s2 of S2 that satisfy the join
condition. Syntactically, the clause consists of a list of attribute names,
which are homonyms from the schemas of S1 and of S2; the strings LEFT or
RIGHT that may be present as prefixes of attribute names as result of binary
operators are not considered for detecting homonyms.
Example. Fig. [f] shows the effect of this MAP operation on a small portion
of the genome; the input consists of one reference sample with 3 regions and
three mutation experiment samples, the output consists of three samples,
each with the same regions as the reference sample, whose features corre-
sponds to the number of mutations which intersect with those regions. The
result can be interpreted as a (3 X 3) genome space.

9Biologists typically consider the transposed matrix, because there are fewer exper-
iments (on columns) than regions (on rows). Such matrix can be observed using heat
maps, and its rows and/or columns can be clustered to show patterns.

20The implementation generates identifiers for the result by applying hash functions to
the identifiers of operands, so that resulting identifiers are unique; they are identical if
generated multiple times for the same input samples.

19

| | ‘ | | ‘ Reference

| I il Sample 1

| | I [— [sample 2

| T N L sample 3

| 3 | ‘ 3 | | 9} ‘ Output 1
[2] 2 | 2 | Output 2
| / | 2 | | 0 | Qutput 3

Figure 4: Example of map using one sample as reference and three samples
as experiment, using the Count aggregate function.

In the example below, the MAP operation counts how many mutations
occur in known genes, where the dataset EXP contains DNA mutation regions
and GENES contains the genes.

RES = MAP() GENES EXP;

5.3 Join

<83> = JOIN([<genometric-pred>][;] [output: <coord-gen>]
[;] [joinby: <Am1>, .., <Amn>]) <S1> <S2>;

The JOIN operation applies to two datasets, respectively called anchor
(the first one) and experiment (the second one), and acts in two phases
(each of them can be missing). In the first phase, pairs of samples which
satisfy the joinby predicate (also called meta-join predicate) are identified;
in the second phase, regions that satisfy the genometric predicate are
selected. The meta-join predicate allows selecting sample pairs with appro-
priate biological conditions (e.g., regarding the same cell line or antibody);
syntactically, it is expressed as a list of homonym attributes from the schemes
of S1 and S2, as previously. The genometric join predicate allows expressing
a variety of distal conditions, needed by biologists. The anchor is used as
startpoint in evaluating genometric predicates (which are not symmetric).
The join result is constructed as follows:

20

e The meta-join predicates initially selects pairs s; of S1 and ss of S2
that satisfy the joinby condition. If the clause is omitted, then the
Cartesian product of all pairs s; of S1 and sg of S2 are selected. For
each such pair, a new sample s19 is generated in the result, having an
identifier idi2, generated from id; and ids, and metadata given by the
union of metadata of s; and ss.

e Then, the genometric predicate is tested for all the pairs < 7;,7; >
of regions, with 71 € s1 and 7; € s2, by assigning the role of anchor
region, in turn, to all the regions of s1, and then evaluating the geno-
metric predicate condition with all the regions of s2. From every pair
< 13,7 > that satisfies the join condition, a new region is generated
in s19.

From this description, it follows that the join operation yields results that
can grow quadratically both in the number of samples and of regions; hence,
it is the most critical GMQL operation from a computational point of view.

Genometric predicates are based on the genomic distance, defined as
the number of bases (i.e., nucleotides) between the closest opposite ends of
two regions, measured from the right end of the region with left end lower
coordinate@ A genometric predicate is a sequence of distal conditions,
defined as follows:

o UP/DOWN?| denotes the upstream and downstream directions of the
genome. They are interpreted as predicates that must hold on the
region so of the experiment; UP is true when ss is in the upstream
genome of the anchor region@ When this clause is not present, distal
conditions apply to both the directions of the genome.

° MD(K)@ denotes the minimum distance clause; it selects the K regions
of the experiment at minimal distance from the anchor region. When

2INote that with our choice of interbase coordinates, intersecting regions have distance
less than 0 and adjacent regions have distance equal to 0; if two regions belong to different
chromosomes, their distance is undefined (and predicates based on distance fail).

22 Also: UPSTREAM, DOWNSTREAM.

2 Upstream and downstream are technical terms in genomics, and they are applied to
regions on the basis of their strand. For regions of the positive strand (or for unstranded
regions), UP is true for those regions of the experiment whose right end is lower than the
left end of the anchor, and DOWN is true for those regions of the experiment whose left
end is higher than the right end of the anchor. (Remaining regions of the experiment are
overlapping with the anchor region.) For the negative strand, ends and disequations are
exchanged.

24 Also: MINDIST, MINDISTANCE.

21

there are ties (i.e., regions at the same distance from the anchor re-
gion), regions of the experiment are kept in the result even if they
exceed the K limit.

° DLE(N)E denotes the less-equal distance clause; it selects all the regions
of the experiment such that their distance from the anchor region is
less than or equal to N based™|

° DGE(N)E| denotes the greater-equal distance clause; it selects all the
regions of the experiment such that their distance from the anchor
region is greater than or equal to N bases.

Genometric clauses are composed by strings of distal conditions; we say that
a genometric clause is well-formed iff it includes the less-equal distance
clause; we expect all clauses to be well formed, possibly because the clause
DLE (Max) is automatically added at the end of the string, where Max is a
problem-specific maximum distance.

Example. The following strings are legal genometric predicates:

DGE(500), UP, DLE(1000), MD(1)

DGE(50000), UP, DLE(100000), (Si.left - S2.left > 600)
DLE(2000), MD(1), DOWN

MD(100), DLE(3000)

Note that different orderings of the same distal clauses may produce different
results; this aspect has been designed in order to provide all the required
biological meanings.

Examples. In Fig. [5| we show an evaluation of the following two clauses
relative to an anchor region: A: MD(1), DGE(100); B: DGE(100), MD(1).
In case A, the MD(1) clause is computed first, producing one region which
is next excluded by computing the DGE(100) clause; therefore, no region is
produced. In case B, the DGE(100) clause is computed first, producing two
regions, and then the MD(1) clause is computed, producing as result one
regio

25 Also: DIST <= N, DISTANCE <= N.

26DLE(—l) is true when the region of the experiment overlaps with the anchor region;
DLE(0) is true when the region of the experiment is adjacent to or overlapping with the
anchor region.

27 Also: DIST >= N, DISTANCE >= N.

Z8The two queries can be expressed as: produce the minimum distance region iff its
distance is less than 100 bases and produce the minimum distance region after 100 bases.

22

B)

Figure 5: Different semantics of genometric clauses due to the ordering of
distal conditions; excluded regions are gray.

Similarly, the clauses A: MD(1), UP and B: UP, MD(1) may produce
different results, as in case A the minimum distance region is selected re-
gardless of streams and then retained iff it belongs to the upstream of the
anchor, while in case B only upstream regions are considered, and the one
at minimum distance is selected.

Next, we discuss the structure of resulting samples. Assume that regions
r; of s; and r; of s; satisfy the genometric predicate, then a new region r;; is
created, having merged features obtained by concatenating the feature at-
tributes of the first dataset with the feature attributes of the second dataset
as discussed in Section @ The coordinates c;; are generated according to
the coord-gen clause, which has four options

1. LEFT assigns to r;; the coordinates ¢; of the anchor region.
2. RIGHT assigns to r;; the coordinates c; of the experiment region.

3. INT assigns to 7;; the coordinates of the intersection of r; and rj; if
the intersection is empty then no region is produced.

4. CAT (also: CONTIG) assigns to r;; the coordinates of the concatenation
of r; and r; (i.e., the region from the lower left end between those of
r; and r; to the upper right end between those of 7; and ;).

291f the operation applies to regions with the same strand, the result is also stranded in
the same way; if it applies to regions with different strands, the result is not stranded.

23

Example. The following join searches for those regions of particular ChIP-
seq experiments, called histone modifications (HM), that are at a minimal
distance from the transcription start sites of genes (TSS), provided that
such distance is greater than 120K based’} Note that the result uses the
coordinates of the experiment.

RES = JOIN(MD(1), DGE(120000); output: RIGHT) TSS HM;

6 Utility Operations

6.1 Materialize

MATERIALIZE <S1> INTO file_name;

The MATERIALIZE operation saves the content of a dataset S1 in a file,
whose name is specified, and registers the saved dataset in the system to
make it seamlessly usable in other GMQL queries. All datasets defined in
a GMQL query are, by default, temporary; to see and preserve the content
of any dataset generated during a GMQL query, the dataset must be ma-
terialized. Any dataset can be materialized, however the operation is time
expensive; for best performance, materialize the relevant data only.

7 Full Biological Example

This example uses a MAP operation to count the peak regions in each EN-
CODE ChIP-seq sample that intersect with a gene promoter (i.e., regulatory
region); then, in each sample it projects over the promoters with at least
one intersecting peak and counts these promoters. Finally, it extracts the
top-3 samples with the highest number of such promoters.

HM_TF = SELECT(dataType == ’ChipSeq’) ENCODE;

PROM = SELECT(annotation == ’promoter’) ANNOTATION;
PROM1 = MAP() PROM HM_TF;

PROM2 = PROJECT(region: count_PROM_HM_TF >= 1) PROM1;
PROM3 = EXTEND(prom_count AS COUNT()) PROM2;

PROM_res = ORDER(DESC prom_count; meta_top: 3) PROM3;
MATERIALIZE PROM_res INTO res;

39This query is used in the search of enhancers, i.e., parts of the genome which have an
important role in gene activation.

24

The query was executed over 2,423 samples including a total of 83,899,526
peaks, which were mapped to 131,780 promoters, producing as result 29
GB of data; next, promoters with peaks were counted, and the 3 samples
with more of such promoters were selected, having between 30K and 32K
promoters each.

ID ATTRIBUTE VALUE
131 order 1

131 antibody RBBP5S
131 cell H1-hESC
131 count 32028
133 order 2

133 antibody SIRT6
133 cell H1-hESC
133 count 30945
113 order B

113 antibody H2AFZ
113 cell H1-hESC
113 count 30825

Figure 6: Metadata excerpt of resulting samples

The PROM_res result variable includes both regions and metadata; the
former indicate the top 3 interesting promoter regions (that can be inspected
using viewers, e.g., genome browsers), the latter allow tracing provenance of
resulting samples and associating the extracted genomic information with
the phenotypes. Fig. [6]shows 4 metadata attributes of the resulting samples:
the order of the sample, the antibody and cell type (normal embryonic
stem cells) used in the experiment preparation, and the promoter region
count.

References

[1] The 1000 Genomes Consortium, An integrated map of genetic variation
from 1,092 human genomes. Nature, 491, 56-65, November 2012.

[2] F. Afrati et al., Bounds for Overlapping Interval Join of Map Reduce.
Workshop Proceedings, EDBT/ICDT, 2015.

[3] A. Alexandrov et al. The Strathosphere platform for big data analytics.
VLDB Journal 23(6), 939-964, 2014.

[4] Apache Flink. http://flink.apache.org/
[5] Apache Lucene. http://lucene.apache.org/core/
[6] Apache Pig. http://pig.apache.org/

[7] Apache Spark. http://spark.apache.org/

25

8]

[9]

[10]

[11]

[16]
[17]

[18]

[19]

[20]

[21]

V. Bafna et al. Abstractions for genomics. Commun. ACM, 56(1):83-93,
2013.

M. Cereda et al. GeCo++: a C++ library for genomic features com-

putation and annotation in the presence of variants. Bioinformatics,
27(9):1313-1315, 2011.

J. Ekanayake et al. MapReduce for data intensive scientific analyses. In
Proc. IEEFE eScience, 277-284, 2008.

S. Ewen et al., Spinning fast iterative data flows. PVLDB 2012, 1268-
1279.

ENCODE Project Consortium. An integrated encyclopedia of DNA
elements in the human genome. Nature, 489(7414):57-74, 2012.

Galaxy. http://galaxyproject.org/

H. Gunadhi and A. Segev. Query processing algorithms for temporal
intersection joins. In Proc. IEEE ICDE, 336-344, 1991.

T. Hey at al. Jim Gray on eScience: a Transformed Scientific Method,
In The fourth paradigm. Data-intensive scientific discovery, Microsoft

Research, Redmond, WA, XVII-XXXI, 2009.
Hadoop 2. http://hadoop.apache.org/docs/stable/

F. Hueske et al. Opening the black boxes in dataflow optimization.
PVLDB 2012, 1256-1267.

W.J. Kent, The human genome browser at UCSC. Genome Res., 2002;
12(6):996-1006.

C. Kozanitis et al. Using Genome Query Language to uncover genetic
variation. Bioinformatics 30(1):1-8, 2014.

M. Masseroli, P. Pinoli, F. Venco, A. Kaitoua, V. Jalili, F. Pal-
luzzi, H. Muller, S. Ceri. GenoMetric Query Language: A novel ap-
proach to large-scale genomic data management. Bioinformatics, 2015;
31(12):1881-1888.

S. Neph, et al. BEDOPS: high-performance genomic feature operations.
Bioinformatics, 28(14):1919-1920, 2012.

26

[22]

[23]

[24]

[25]

H. Nordberg et al. BioPig: a Hadoop-based analytic toolkit for large-
scale sequence data. Bioinformatics, 29(23):3014-3019, 2013.

C. Olston et al. Pig Latin: A not-so-foreign language for data process-
ing. ACM-SIGMOD, 1099-1110, 2008.

K. Ovaska et al. Genomic Region Operation Kit for flexible processing
of deep sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform.,
10(1):200-206, 2013.

Anonymous paper, Accelerating Bioinformatics ~ Research
with New Software for Big Data to Knowledge (BD2K),
Paradigm4 Inc., Waltham, MA, 1-16, 2015 (downloaded from:
http://www.paradigm4.com/ on June 2015.)

A. R. Quinlan and I. M. Hall. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics, 26(6):841-842, 2010.

U. Rohm and J. Blakeley. Data management for high-throughput ge-
nomics. In Proc. CDIR, 1-10, 2009.

A. Schumacher et al. SeqPig: simple and scalable scripting for large
sequencing data sets in Hadoop. Bioinformatics, 30(1):119-120, 2014.

K. Shvachko et al. The Hadoop distributed file system. In Proc. MSST,
1-10, 2010.

L.D. Stein. The case for cloud computing in genome informatics.
Genome Biol., 11(5):207, 2010.

S. Tata et al. Declarative Querying for Biological Sequences. In Proc.
IEEE ICDE, 87:99, 2006.

S. Tata et al. Periscope/SQL: Interactive exploration of biological se-
quence databases. In Proc. VLDB, 1406-1409, 2007.

R. C. Taylor. An overview of the Hadoop MapReduce HBase frame-
work and its current applications in bioinformatics. BMC Bioinformat-
ics, 11(12):S1, 2010.

R. Xin et al. Shark: SQL and Rich Analytics at Scale. In Proc. ACM-
SIGMOD, June 2013.

J. N. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis
project. Nat Genet., 45(10):1113-1120, 2013.

27

[36] M. S. Weiwiorka et al. SparkSeq: Fast, scalable and cloud-ready tool for
the interactive genomic data analysis with nucleotide precision. Bioin-
formatics, 30(18):2652-2653, 2014.

[37] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In Proc. USENIX, 15-28,
2012.

[38] M. Zaharia et al. Discretized Streams: Fault-Tolerant Streaming Com-
putation at Scale. In Proc.M SOSP, November 2013.

28

	Introduction and Motivations
	Region-based Data Model with Metadata
	Motivation
	Definition
	Examples

	GenoMetric Query Language
	General Properties
	Predicates Evaluation
	Sintactic Conventions

	Relational GMQL Operations
	Select
	Project
	Extend
	Group
	Merge
	Order
	Union
	Difference

	Domain-Specific Operations
	Cover
	Map
	Join

	Utility Operations
	Materialize

	Full Biological Example

