
GMQL – Example queries

BASIC OPERATORS

1) SELECT 1

2) MATERIALIZE 5

3) PROJECT 5

4) EXTEND 10

5) ORDER 11

6) GROUP 14

7) MERGE 17

8) UNION 19

9) DIFFERENCE 19

10) MAP 21

11) JOIN 23

12) COVER 33

Cover variants 36

1

BASIC OPERATORS

This document contains a list of relevant examples with reference instructions for each of the
GMQL basic operators, showcasing how to combine different parameters.

1) SELECT

Note 1: SELECT() DSin selects all samples in dataset DSin and copies them in the output.

Note 2: The wildcard character ‘*’ can be used in a SELECT statement to indicate all values
of an attribute, e.g., SELECT(NOT(attribute_name == ‘*’)) DSin selects all samples in dataset
DSin which do not include in their metadata the attribute named attribute_name (with any
value) and copies such samples in the output.

Note 3: In semijoin option (which is one of the possible metajoin options of GMQL) different
alternatives are available with respect to dot-separated prefixes in case present for metadata
attribute names:

• metadata_attribute_name: it matches all attributes that are equal to OR end with the
dot-separated suffix specified name (regardless additional metadata_attribute_name
dot-separated prefixes not explicitly specified);

• EXACT(metadata_attribute_name): it matches all attributes that are equal to the
specified name (without any prefixes);

• FULL(metadata_attribute_name): it matches two attributes if they end with the
specified name AND their full names are equal.

Example 1:
RES = SELECT(region: (chr == chr2 OR chr == chr3) AND NOT(strand == + OR strand == -)

AND start >= 130 AND stop <= 250) Example_Dataset_2;

This GMQL statement restricts the set of selected regions in each sample of the
Example_Dataset_2 dataset to the ones belonging to either chromosome chr2 or chromosome
chr3 (note that, since chr is a region coordinate attribute, its value must be specified without
quotes). The syntax NOT(strand == + OR strand == -) can be used to include regions whose
strand is unknown, i.e., neither positive nor negative (i.e., unstranded regions). Note that,
when specifying particular values for the attribute strand, quotes should not be used. The last
two conditions restrict the selected regions to the ones that extend along the genomic interval
[130, 250].
If no regions of a samples are selected, the sample is not included in the output RES dataset.

RES (chr3):

2

Example 2:
RES = SELECT(patient_age < 70; region: chr == chr1) Example_Dataset_1;

This GMQL statement selects from Example_Dataset_1 data samples of patients younger
than 70 years old, based on filtering on sample metadata attribute patient_age, and in selected
samples it selects only those regions that are on chromosome chr1. If no regions of a sample
are selected, that sample is not included in the output.

RES:

Example 3:
RES = SELECT(region: chr == chr1 AND score > 4) Example_Dataset_1;

This GMQL statement selects, in all samples in Example_Dataset_1, those regions which are
on chromosome chr1 and have a value greater than 4 for their attribute score. The resulting
RES dataset contains a copy of the samples of Example_Dataset_1, with the same metadata,
but with only the selected regions. When, for a specific sample, no regions that satisfy the
condition are selected, that sample is not included in the output.

RES:

Example 4:
RES = SELECT(cell == "AG04450"; region: chr == chr1 AND left > 150) Example_Dataset_1;

This GMQL statement creates a new output dataset RES which only includes samples from
the input dataset Example_Dataset_1 that present the metadata attribute-value pair (cell
AG04450). Moreover, in each sample, only the regions that are on chromosome chr1 and
whose left coordinate value is greater than 150 are included in the output RES dataset. If no
regions of a sample are selected, that sample is not included in the output.

3

RES:

Example 5:
RES = SELECT(region: chr == chr1 AND NOT(score == 4)) Example_Dataset_1;

This GMQL statement produces a dataset that contains all the samples of the input dataset
(with all their metadata) which have at least one region on chromosome chr1 without value 4
for the attribute score. Inside each sample, the regions with attribute score different from 4
and that are on chromosome chr1 are preserved; instead, the regions that are on chromosome
chr1 and have attribute score equal to 4, or are on other chromosomes, are excluded. Note
that in case all regions belonging to a sample have been excluded, that empty sample is not
produced in the output dataset.

RES:

Example 6:
RES = SELECT(cell_karyotype == "normal" AND (cell_sex == "Male" OR cell_tier == 3);

region: chr == chr1) Example_Dataset_1;

This GMQL statement shows how it is possible to combine multiple conditions on the metadata
attributes by using the Boolean operators AND and OR. In this particular case, the output
dataset contains all the samples that have cell_karyotype == "normal" and cell_sex == "Male"
and also all the samples that have cell_karyotype == "normal" and cell_tier == 3. For each of
the selected samples, only the regions on chromosome chr1 are selected; if no regions of a
sample are selected, that sample is not included in the output.

4

RES:

Example 7:
D = SELECT(region: chr == chr5) Example_Dataset_2;
RES = SELECT(cell_lineage == "endoderm"; region: chr == chr1 AND pvalue < 8; semijoin:

cell_karyotype NOT IN D) Example_Dataset_1;

This GMQL statement creates a new dataset called RES by selecting those samples and their
regions from the Example_Dataset_1 dataset such that:

A. each output sample has a metadata attribute called cell_lineage with value endoderm;
B. each output sample also has not a metadata attribute called cell_karyotype that has

the same value of at least one of the values that a metadata attribute equally called
cell_karyotype has in at least one sample of the Example_Dataset_2 dataset (which in
this case has value “cancer” only);

C. for each sample satisfying A and B, only its regions that are on chromosome chr1 and
have a region attribute called pvalue with the associated value less than 8 are
conserved in output; only samples with at least one conserved region are selected in
the output.

RES:

Example 8:
RES = SELECT(region: chr == chr1 AND score > META(avg_score)) Example_Dataset_1;

This GMQL statement allows to select in each sample of the input Example_Dataset_1 dataset
all those regions on chromosome chr1 that have attribute score with a value greater than the
value of the metadata attribute avg_score of the same sample. If no regions of a sample are
selected, that sample is not included in the output.

5

RES:

2) MATERIALIZE

Note 1: In a GMQL script or query a MATERIALIZE statement is always necessary in order to
compile/execute it. Only in this way a result of the computation becomes visible and available
for download.

Note 2: The actual GMQL implementation materializes a dataset into a file with a name in the
form [queryname]_[timestamp]_filename.
All datasets defined in a GMQL query are, by default, temporary; to store and access the
content of any dataset generated during a GMQL query such dataset must be materialized.
Any dataset can be materialized; however, the operation is time expensive, so for better
performance it is suggested to materialize only relevant datasets, such as the final output.

Example:
RES = SELECT() Example_Dataset_1;
MATERIALIZE RES INTO materialize;

This GMQL statement saves the content of the temporary RES dataset into a file named
[queryname]_[timestamp]_materialize.

3) PROJECT

Note 1: The default form of this operator has no parameter. PROJECT() DSin applies the
projection only on the regions. It removes all the region attributes which are not coordinates
(i.e., only chr, start, stop, and strand are kept).

Note 2: It is possible to use the special keywords ALLBUT to retain all existing genomic region
or metadata attributes apart from a specified set.

Note 3: If the names of existing region or metadata attributes are used in place of new region
names, the operation updates such region attributes to the new specified values.

6

To specify the new values, the following options are available:
- All aggregation functions already defined;
- All basic mathematical operations (+, -, *, /), including usage of parenthesis;
- The square root mathematical function (i.e., SQRT(attribute_name));
- Whenever possible, the metadata values are cast to numeric. If the cast fails (i.e., the

metadata value is a not castable string) the resulting metadata should contain “GMQL
Casting Exception: Could not parse”.

Note 4: To express which set of region or metadata attributes should be considered, the
wildcard "?" can be used in the RAi place of the syntax (at most one per attribute). For instance,
the user can write statements such as:
OUTPUT_DATASET = PROJECT(?.score) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(?.score, ?.name) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(DS.?) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(my.?.score) INPUT_DATASET;
OUTPUT_DATASET = PROJECT(S.?, ?.att, S.?.att) INPUT_DATASET;
Note that PROJECT(?.S.?) is incorrect.

Note 5: It is possible to create a new textual region or metadata attribute with a defined value,
e.g., OUTPUT_DATASET = PROJECT(region_update: label AS “class1”) INPUT_DATASET;.

Note 6: It is possible to define a new numeric region attribute with "null" value. The syntax for
creating a new attribute with null value is attribute_name AS NULL(TYPE), where type may
be INTEGER or DOUBLE. As an example, we can write statements such as
OUTPUT_DATASET = PROJECT(region_update: signal AS NULL(INTEGER), pvalue AS
NULL(DOUBLE)) INPUT_DATASET;.
This feature is useful to extend the schema of a dataset before its composition, through the
UNION() operator, with another dataset, so that all attributes of the two datasets are included
in the UNION() output dataset (which is defined to have the same schema of the UNION() left
input dataset). Notice that a null value for the type STRING does not exist, which is instead
defined as the empty string (i.e., “”).

Note 7: It is possible to define a new region attribute with the value of a metadata attribute
using the syntax region_attribute_name AS META(metadata_attribute, type), e.g.,
OUTPUT_DATASET = PROJECT(region_update: signal AS META(avg_signal, DOUBLE))
INPUT_DATASET;
Notice that the type of the new region attribute has to be specified; it can be INTEGER or
DOUBLE if the metadata attribute has numeric values, STRING otherwise.

Example 1:
D = SELECT() Example_Dataset_1;
RES = PROJECT(region_update: length AS right - left) D;
MATERIALIZE RES INTO project_1;

This GMQL statement creates a new dataset called RES by preserving all region attributes
and creating a new region attribute called length with value obtained by subtracting the left
coordinate value of a region from its right coordinate value. This simple operation computes
the length of the region in terms of number of bases. Notice that the length is always positive
regardless of the strand of the region, because right and left coordinates already take into
account the direction.

7

Example 2:
D = SELECT() Example_Dataset_1;
RES = PROJECT(region_update: new_right AS right) D;
MATERIALIZE RES INTO project_2;

This GMQL statement creates a new dataset called RES by preserving all region attributes
and creating a new region attribute called new_right which contains a copy of the value of the
coordinate attribute right. This allows to subsequently aggregate regions by their right
coordinate value using the new_right attribute.

Example 3:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = PROJECT(region_update: start AS start - 40, stop AS start + 30) D;
MATERIALIZE RES INTO project_3;

This PROJECT statement considers an input D dataset and generates in output a RES dataset
with the region coordinates left and right redefined by shifting the upstream one 40 bases
upstream and the downstream one 30 bases downstream from the original upstream one, by
using the start/stop option that takes the region strand into account.

RES:

Example 4:
D = SELECT() Example_Dataset_1;
RES = PROJECT(metadata: ALLBUT cell, cell_sex) D;
MATERIALIZE RES INTO project_4;

This example shows how to use the ALLBUT option of the GMQL PROJECT operator to
exclude multiple metadata attributes, retaining all the others not specified. It creates a new
dataset RES by preserving all region attributes and metadata attributes, apart from the cell
and cell_sex ones, which are excluded from the metadata attributes of all the samples.

Example 5:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = PROJECT(ALLBUT score, pvalue; region_update: new_score AS (score / 1000.0) +

100; metadata_update: normalized AS 1) D;
MATERIALIZE RES INTO project_5;

This PROJECT statement creates a new dataset called RES by preserving all region attributes
apart from score and pvalue, and creating a new region attribute called new_score by dividing
the existing score value of each region by 1000.0 and incrementing it by 100.

8

It also generates, for each sample of the new dataset, a new metadata attribute called
normalized with value 1, which can be used in future selections.

RES:

Example 6:
D = SELECT() Example_Dataset_1;
RES = PROJECT(score, pvalue; metadata: cell, antibody_tag) D;
MATERIALIZE RES INTO project_6;

This GMQL statement produces an output dataset RES that contains the same samples as
the input dataset Example_Dataset_1. Each output sample only preserves, as region
attributes, the four basic coordinates (chr, left, right, strand) and the specified region attributes
score and pvalue, and as metadata attributes only the specified ones, i.e., cell and
antibody_tag.

Example 7:
D = SELECT() Example_Dataset_1;
RES1 = PROJECT(metadata_update: patient_age AS patient_age + 10) D;
RES2 = PROJECT(metadata_update: patient_age_plus AS patient_age + 100) D;
MATERIALIZE RES1 INTO project_7a;
MATERIALIZE RES2 INTO project_7b;

The first PROJECT statement produces an output dataset RES1 that contains the same
samples as the input dataset Example_Dataset_1. Each output sample contains the same
region attributes as the samples in Example_Dataset_1 dataset. As metadata attributes and
values, each sample contains the same ones as in Example_Dataset_1 samples, with the
exception of the attribute patient_age, whose value is incremented by 10.
The second PROJECT statement has the same effect, but instead of substituting the value of
the patient_age metadata attribute, it adds the patient_age_plus metadata attribute, which
corresponds to the former patient_age attribute with its value incremented by 100.

Example 8:
D = SELECT() Example_Dataset_1;
RES = PROJECT(region_update: qvalue AS NULL(DOUBLE), peak AS NULL(INTEGER),

other AS NULL(DOUBLE)) D;
MATERIALIZE RES INTO project_8;

This example shows how to write a correct PROJECT statement which adds to all samples of
the input dataset Example_Dataset_1 the region attributes qvalue, signal and other of the
specified type. Those of these attributes that do not exist in the input dataset are added to the

9

schema of the RES dataset and initialized with a NULL value in all regions of all samples of
the RES dataset; those of these attributes that already exist in the input dataset
Example_Dataset_1 are set to the specified type (in case changing the original one) and their
values are set to NULL in all regions of all samples of the RES dataset.

Example 9:
D = SELECT() Example_Dataset_1;
RES = PROJECT(region_update: signalSq AS SQRT(signal); metadata_update: new_score

AS SQRT(avg_score)) D;
MATERIALIZE RES INTO project_9;

This GMQL statement allows to build an output dataset RES such that all the samples from
the input dataset Example_Dataset_1 are conserved, as well as their region attributes (and
their values) and their metadata attributes (and their values). The new region attribute signalSq
is added to the output schema and to all the output samples with value correspondent to the
mathematical squared root of the pre-existing region attribute signal. In addition, the new
metadata attribute new_score is added to all output samples with value correspondent to the
mathematical squared root of the pre-existing metadata attribute avg_score.

Example 10:
D = SELECT() Example_Dataset_1;
RES = PROJECT(region_update: sampleID AS META(ID, INTEGER), score AS

META(avg_score, DOUBLE), cell AS META(cell, STRING)) D;
MATERIALIZE RES INTO project_10;

As Example 9, this GMQL statement allows to build an output dataset RES such that all the
samples from the input dataset Example_Dataset_1 are conserved, as well as their region
attributes (and their values) and their metadata attributes (and their values). The new region
attributes sampleID, score, and cell are added to the schema with the specified type
(INTEGER, DOUBLE and STRING, respectively); for all regions of a sample their values are
equal to the value of the indicated metadata attribute of the sample (respectively: ID,
avg_score, and cell).

Example 11:
D = SELECT() Example_Dataset_1;
RES = PROJECT(region_update: chr1 AS chr, start1 AS start, stop1 AS stop,

 strand1 AS strand) D;
MATERIALIZE RES INTO project_11;

This GMQL statement creates a new dataset called RES equal to the input dataset
Example_Dataset_1, but in addition with the four new region attributes called chr1, start1,
stop1, and strand1, which contain respectively copies of the values of the coordinate attributes
chr, start, stop and strand. This allows to subsequently aggregate regions by their coordinate
values using these new attributes (note that aggregating to the original coordinate attributes
is not allowed).

Example 12:
D = SELECT() Example_Dataset_1;
RES = PROJECT() D;
MATERIALIZE RES INTO project_12;

This GMQL statement creates a new dataset RES equal to the input dataset
Example_Dataset_1, but with the only difference that it keeps only the coordinates of every
region, while all other region attributes and values are removed from the RES dataset.

10

Example 13:
D = SELECT() Example_Dataset_1;
RES = PROJECT(metadata_update: newID AS (ID * 100), newInfo AS SQRT(Info)) D;
MATERIALIZE RES INTO project_13;

This GMQL statement creates a new dataset RES equal to the input dataset
Example_Dataset_1. In addition, in the metadata of RES samples, it adds two new metadata:
newID, which yields the value of the existing metadata attribute ID multiplied by a factor of 100
(the new value is of type double), and newInfo, which instead contains the special value
“GMQL Casting Exception: Could not parse” since it is derived from a non-numerical field
which cannot be casted (in order to perform the numerical operation of computing its squared
root).

4) EXTEND

Note: EXTEND does not have a default form (the statement EXTEND() DSin does not compile);
at least one parameter is required.

Example 1:
D = SELECT() Example_Dataset_1;
RES = EXTEND(region_count AS COUNT()) D;
MATERIALIZE RES INTO extend_1;

This GMQL statement counts the regions in each sample of the input dataset
Example_Dataset_1 and stores their number as value of the new metadata region_count
attribute of the correspondent sample in the output dataset RES.

Example 2:
D = SELECT() Example_Dataset_1;
RES = EXTEND(region_count AS COUNT(), min_pvalue AS MIN(pvalue)) D;
MATERIALIZE RES INTO extend_2;

This GMQL statement copies all samples of the Example_Dataset_1 dataset into the RES
dataset, and then calculates two new metadata attributes for each of them:

1. region_count is the number of sample regions;
2. min_pvalue is the minimum pvalue of the sample regions.

RES sample regions are the same as the ones in Example_Dataset_1.

Example 3:
D = SELECT() Example_Dataset_1;
RES = EXTEND(all_scores AS BAG(score)) D;
MATERIALIZE RES INTO extend_3;

This GMQL statement copies all samples of Example_Dataset_1 dataset into RES dataset,
and then for each of them adds another metadata attribute, all_scores, which is the
aggregation comma-separated list of all the values (or only the distinct ones in the case of
using BAGD() instead of BAG()) that the attribute score takes in the sample regions.

11

Example 4:
D = SELECT() Example_Dataset_1;
RES = EXTEND(quart1 AS q1(score)) D;
MATERIALIZE RES INTO extend_4;

This GMQL statement copies all the samples of the Example_Dataset_1 dataset into the RES
dataset and, for each of them, it adds an additional metadata attribute quart1, calculated as
the first quartile value of the sample’s score distribution.

5) ORDER

Note 1: ORDER does not have a default form (the statement ORDER() DSin does not compile);
at least an ordering metadata attribute or a region_order clause must be specified.

Note 2: When the specified ordering metadata attributes are not present in any of the input
samples, an empty output is generated.

Example 1:
D = SELECT(region: chr == chr1) Example_Dataset_1;
D1 = EXTEND(Region_count AS COUNT()) D;
RES = ORDER(Region_count DESC; meta_top: 2) D1;
MATERIALIZE RES INTO order_1;

This GMQL statement orders the samples in the Example_Dataset_1 dataset according to
their Region_count metadata attribute and takes the two samples that have the highest count.
As shown in the following figure, the sample with attribute _order = 3 is excluded from the
output.

RES:

Example 2:
D = SELECT(region: chr == chr1) Example_Dataset_1;
D1 = EXTEND(Region_count AS COUNT()) D;
RES = ORDER(Region_count; meta_top: 2; region_order: pvalue DESC; region_top: 2) D1;
MATERIALIZE RES INTO order_2;

12

This GMQL statement extracts the first 2 samples on the basis of their region counter (those
with the smaller Region_count metadata attribute value) and then, for each of them, it extracts
2 regions on the basis of their pvalue (those with the higher pvalue region attribute value).

RES:

Example 3:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = ORDER(avg_score, ID DESC; meta_top: 2) D;
MATERIALIZE RES INTO order_3;

This GMQL statement first sorts the samples in D dataset by ascending order with respect to
their metadata avg_score attribute, then it sorts them by descending order based on the values
of their metadata ID attribute (the new metadata attribute _order is added to all samples).
Finally, only the samples with _order = 1 or _order = 2 are extracted in the output RES dataset.

RES:

Example 4:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = ORDER(avg_score DESC; meta_topp: 70) D;
MATERIALIZE RES INTO order_4;

This GMQL statement first sorts the samples in D dataset by descending order with respect
to their avg_score metadata attribute value; then, it extracts in the RES dataset the top 70%
of the ordered samples.
Since the D dataset contains 3 samples, the statement returns two samples in the RES
dataset.

13

RES:

Example 5:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = ORDER(region_order: score; region_topp: 50) D;
MATERIALIZE RES INTO order_5;

This GMQL statement first sorts, in each sample, the regions according to the increasing value
of their attribute score. Then, for each sample, it only preserves in the RES dataset 50% of
the ordered regions.

RES:

Example 6:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = ORDER(cell_sex, cell; meta_topg: 1; region_order: qvalue, score; region_topg: 2) D;
MATERIALIZE RES INTO order_6;

This GMQL statement groups samples by their metadata attribute cell_sex, and then, for each
group, it selects only the first sample, according to the ascending order of the metadata
attribute cell. In addition, inside each sample of the D dataset, it orders the regions according
to the ascending order of their qvalue attribute values, and then, for each group, it only outputs
the first two regions in each sample based on ascending order of their attribute score.
Note that the region attribute order is added to the schema of the output dataset. This new
region attribute equals to 1 in the regions that are first (by ascending order of attribute score)
and 2 in the regions that are second (by the same order).

14

RES:

6) GROUP

Note 1: The default form of this operator has no parameter. GROUP() DSin applies the
grouping only on the region attributes which represent the four genomic coordinates, i.e., chr,
start, stop, and strand. Inside a single sample, it collapses all regions that have equal values
in these four coordinates into a single one, thus eliminating duplicate regions.

Note 2: The option region_keys accepts as parameters only region attributes that are not
region coordinates. When used, it always implicitly considers, preceding the list of specified
attributes, the 4 region coordinates. This means that a grouping is always performed on these
coordinates before grouping on additional region attributes.

Note 3: For the grouping metadata attributes in the option (which is one of the possible
metajoin options of GMQL) different alternatives are available with respect to dot-separated
prefixes in case present for metadata attribute names:

• metadata_attribute_name: it matches all attributes that are equal to OR end with the
dot-separated suffix specified name (regardless additional metadata_attribute_name
dot-separated prefixes not explicitly specified);

• EXACT(metadata_attribute_name): it matches all attributes that are equal to the
specified name (without any prefixes);

• FULL(metadata_attribute_name): it matches two attributes if they end with the
specified name AND their full names are equal.

Example 1:
D = SELECT(region: chr == chr2) Example_Dataset_2;
RES = GROUP(controlId; meta_aggregates: max_cell_tier AS MAX(cell_tier)) D;
MATERIALIZE RES INTO group_1;

This GMQL statement groups samples of the input D dataset according to their value of the
metadata attribute controlId and computes the maximum value that the metadata attribute
cell_tier takes inside the samples belonging to each group. The samples in the output RES
dataset have a new _group metadata attribute which indicates which group they belong to,
based on the grouping on the metadata attribute controlId. In addition, they present the new

15

metadata aggregate attribute max_cell_tier. Note that the samples without metadata attribute
controlId are assigned to a single group with _group value equal 0.

RES:

Example 2:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = GROUP(cell; meta_aggregates: n_samp AS COUNTSAMP()) D;
MATERIALIZE RES INTO group_2;

This GMQL statement groups the input D dataset samples based on the grouping attribute
cell, and adds the metadata aggregate attribute n_samp, which counts the number of samples
belonging to the respective group. It has the following output RES dataset samples (note that
now no sample has metadata attribute _group with value equal 0 since all input samples
include the metadata attribute cell, with different values, on which the new grouping is based):

RES:

Example 3:
D = SELECT(region: chr == chr6) Example_Dataset_1;
RES = GROUP(region_aggregates: reg_num AS COUNT()) D;
MATERIALIZE RES INTO group_3;

In each individual D input dataset sample, this GMQL statement groups the sample regions
by their coordinates chr, left, right, strand (which are assumed implicitly), and keeps only one

16

region for each group (i.e., a single region with the same coordinates). This behavior
corresponds to eliminating duplicated regions in the same sample. In the output dataset
schema, the new region attribute reg_num is added, computed as the number of regions that
have the same coordinates for each region group within an individual input sample, and the
computed value is assigned to each region of each output sample. All other region attributes,
which are not coordinates, are discarded; only the 4 coordinates are preserved.
In the below screenshot, the numbers on blue input sample regions represent region attribute
score values, whereas on red output sample regions the numbers represent the new region
attribute reg_num values.

RES:

Example 4:
D = SELECT(region: chr == chr6) Example_Dataset_1;
RES = GROUP(region_keys: score;

region_aggregates: avg_pvalue AS AVG(pvalue), max_qvalue AS MAX(qvalue)) D;
MATERIALIZE RES INTO group_4;

This GMQL statement groups the regions of each D dataset sample by region coordinates
chr, left, right, strand (these are implicitly considered) and the additional region attribute score
(which is explicitly specified), and keeps only one region for each group. In the output RES
dataset schema, the new region attributes avg_pvalue and max_qvalue are added,
respectively computed as the average of the values taken by the pvalue and the maximum of
the values taken by the qvalue region attributes in the regions grouped together, and the
computed value is assigned to each region of each output sample. Note that the region
attributes which are not coordinates or score are discarded.

RES:

17

Example 5:
D = SELECT(region: chr == chr6) Example_Dataset_1;
RES = GROUP(cell_karyotype; meta_aggregates: min_tier AS MIN(cell_tier);

region_aggregates: min_pvalue AS MIN(pvalue)) D;
MATERIALIZE RES INTO group_5;

This GMQL statement shows how the GROUP operator can be used on both metadata and
regions at the same time. In this case, it first groups the samples of the D dataset by metadata
attribute cell_karyotype values, and adds to each sample the attribute _group to indicate which
group it belongs to. Then, it calculates the minimum value of the metadata attribute
cell_karyotype over the samples that are part of a same group, and adds this to all samples
as value of the new metadata attribute min_tier.
Inside each sample, it groups the regions based on their coordinates (implicitly considered,
without the need of using the region_keys option); for each region group it keeps only one
region, and calculates the new region attribute min_pvalue as the minimum of the values taken
by the region attribute pvalue in each region group.

RES:

7) MERGE

Note 1: In gropby option (which is one of the possible metajoin options of GMQL) different
alternatives are available with respect to dot-separated prefixes in case present for metadata
attribute names:

• metadata_attribute_name: it matches all attributes that are equal to OR end with the
dot-separated suffix specified name (regardless additional metadata_attribute_name
dot-separated prefixes not explicitly specified);

• EXACT(metadata_attribute_name): it matches all attributes that are equal to the
specified name (without any prefixes);

• FULL(metadata_attribute_name): it matches two attributes if they end with the
specified name AND their full names are equal.

18

Example 1:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = MERGE() D;
MATERIALIZE RES INTO merge_1;

This GMQL statement collapses a bunch of samples (both regions and metadata) into a single
one. More in detail, it creates a new dataset RES consisting of a single sample having as
regions all the regions in the D dataset, with the same attributes and values, and as metadata
the union of all the metadata attribute values of the samples of the D dataset.

RES:

Example 2:
D = SELECT(region: chr == chr1) Example_Dataset_1;
RES = MERGE(groupby: sex) D;
MATERIALIZE RES INTO merge_2;

This GMQL statement creates a dataset called RES, which contains one sample for each sex
value found within the metadata of the D dataset samples; each created sample contains all
regions from all D samples with the same specific value for their sex metadata attribute.

RES:

19

8) UNION

Example:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = UNION() D1 D2;
MATERIALIZE RES INTO union;

This GMQL statement creates a dataset called RES which contains all samples from the
datasets D1 and D2.

RES:

9) DIFFERENCE

Note 1: DIFFERENCE operates in two different modes based on region intersection: the
default behavior (i.e., DIFFERENCE() DSref DSneg), and the exact matching (i.e.,
DIFFERENCE(exact: true) DSref DSneg). In the second case, only regions in the first dataset
whose coordinates do not exactly match the coordinates of any region in the second dataset
are kept in the output dataset.

Note 2: If all regions of a sample in the first input dataset intersect (match, if the exact option
is used) at least a region in the second input dataset, the sample is not included in the output
dataset.

Note 3: In joinby option (which is one of the possible metajoin options of GMQL) different
alternatives are available with respect to dot-separated prefixes in case present for metadata
attribute names:

• metadata_attribute_name: it matches all attributes that are equal to OR end with the
dot-separated suffix specified name (regardless additional metadata_attribute_name
dot-separated prefixes not explicitly specified);

• EXACT(metadata_attribute_name): it matches all attributes that are equal to the
specified name (without any prefixes);

• FULL(metadata_attribute_name): it matches two attributes if they end with the
specified name AND their full names are equal.

20

Example 1:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(cell_karyotype == "cancer"; region: chr == chr2) Example_Dataset_2;
RES = DIFFERENCE() D1 D2;
MATERIALIZE RES INTO difference_1;

This GMQL statement returns all the regions in the first dataset D1 that do not overlap any
region in the second dataset D2.

RES:

Example 2:
D1 = SELECT(region: chr == chr5) Example_Dataset_1;
D2 = SELECT(cell_karyotype == "cancer"; region: chr == chr5) Example_Dataset_2;
RES = DIFFERENCE(exact: true) D1 D2;
MATERIALIZE RES INTO difference_2;

This GMQL statement extracts all regions in the first input dataset D1 that do not coincide
(exactly from the start to the end coordinate) with at least a region in the second input dataset
D2.

RES:

21

Example 3:
D1 = SELECT(region: chr == chr4) Example_Dataset_1;
D2 = SELECT(region: chr == chr4) Example_Dataset_2;
RES = DIFFERENCE(joinby: cell_karyotype) D1 D2;
MATERIALIZE RES INTO difference_3;

This GMQL statement performs the DIFFERENCE operation considering subsets of samples
that have the same value for the metadata attribute cell_karyotype; indeed, only those
samples si ∈ D1 and sj ∈ D2 that have the same value of cell_karyotype are compared. For
every different value of cell_karyotype the statement allows to extract all the regions of D1
samples, with a cell_karyotype value, that do not intersect any of the regions of D2 samples
with the same cell_karyotype value.

RES:

10) MAP

Note 1: In each reference sample, multiple regions with exactly the same coordinates and
attribute values are managed as a single region.

Note 2: The COUNT() aggregate (counting the number of each experiment sample region
intersecting a certain reference region) is always computed; results are stored in an attribute
named count_[DSrefName]_[DSexpName], where DSrefName and DSexpName are the
names of DSref and DSexp, respectively. To rename the default name of this attribute to a
custom name, e.g., myCountName, use the following syntax: DSout = MAP(count_name:
myCountName) DSref DSexp; (Please note that in case together with count_name you like to
calculate new region attributes, according to the MAP() syntax you have to specify the latter
ones as first predicate of the MAP(), e.g., DSout = MAP(avg_score AS AVG(score);
count_name: myCountName) DSref DSexp;)

Note 3: No parameter is mandatory in the MAP operator. The default behavior with syntax
MAP() DSref DSexp performs the operation without adding any new region attributes (besides
the always computed default one (see Note 1) with the number of each experiment sample
region intersecting a given reference region) and in its computation, it compares all samples
of the reference dataset DSref with all samples of the experiment dataset DSexp.

22

Note 4: In joinby option (which is one of the possible metajoin options of GMQL) different
alternatives are available with respect to dot-separated prefixes in case present for metadata
attribute names:

• metadata_attribute_name: it matches all attributes that are equal to OR end with the
dot-separated suffix specified name (regardless additional metadata_attribute_name
dot-separated prefixes not explicitly specified);

• EXACT(metadata_attribute_name): it matches all attributes that are equal to the
specified name (without any prefixes);

• FULL(metadata_attribute_name): it matches two attributes if they end with the
specified name AND their full names are equal.

Example 1:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = MAP(avg_score AS AVG(score)) D1 D2;
MATERIALIZE RES INTO map_1;

Given a dataset D1, containing a single sample with a set of genomic regions, and another
dataset D2 containing one or more samples of genomic regions, this GMQL statement counts
the number of regions in each sample from the D2 dataset which overlap with a region in the
D1 dataset sample, saving results in the output RES dataset as a region attribute named
count_D1_D2; it also computes the average (AVG) score value across such regions, saving
results in the output RES dataset as a region attribute (feature) called avg_score (in the
screenshot below, its values are shown on top of each RES dataset region). If D1 dataset
contains multiple samples, the number of samples in the output RES dataset is the Cartesian
product of the number of samples in the D1 and D2 datasets, and each of the output samples
represents the mapping of a D2 sample on a D1 sample.

RES:

Example 2:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = MAP(minScore AS MIN(score); count_name: reg_num; joinby: cell) D1 D2;
MATERIALIZE RES INTO map_2;

This GMQL statement counts the number of regions in each sample from D2 dataset that
overlap with a D1 dataset sample region, saving results in output RES dataset as a region
attribute reg_num (in the screenshot below, its values are shown on top of each RES dataset
region), and for each D1 sample region it computes also the minimum score of all the regions
in each D2 sample that overlap with it. The MAP joinby option ensures that only the D2

23

samples referring to the same cell of a D1 sample are mapped on such D1 sample; D2
samples with no cell metadata attribute, or with such metadata but with a different value from
the one(s) of D1 sample(s), are disregarded.

RES:

11) JOIN

Note 1: By construction, the JOIN operation yields results whose number can grow
quadratically both in the number of samples and of regions; hence, it is the most
computationally intensive of all GMQL operations.

Note 2: The behavior of JOIN() without any argument is not defined; at least one of
genometric_predicate or on_attributes conditions must be provided.
In case the user chooses to specify genometric_predicate, it must contain at least one and at
most four distal conditions including DLE (or DL), DGE (or DG), MD, UPSTREAM or
DOWNSTREAM, and it must include at least one less-equal distance or one less distance, or
a minimum distance clause (which can then be combined with other clauses) in order to be
well-formed and compile. Then, if no output option is specified, the default output option CAT
is used.
In case the user chooses to specify on_attribute, this must be followed by the specification of
the output option with either the value LEFT, RIGHT, LEFT_DISTINCT, RIGHT_DISTINCT,
or BOTH (whilst INT and CAT are not permitted).

Note 3: The genomic distance used in genometric predicates is defined as the number of base
pairs (i.e., nucleotides) between the closest opposite ends of two regions on to the same DNA
strand, or when at least one of the two regions has unknown strand, and belonging to the
same chromosome (it is not defined for regions on different chromosomes or different DNA
strands). More formally, considering 𝑟𝑟1 as the region in an anchor dataset sample and 𝑟𝑟2 as
the region in an experiment dataset sample, their distance is calculated as min(𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟1. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −
𝑟𝑟2. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙),𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟2. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑟𝑟1. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙)). If 𝑟𝑟1 and 𝑟𝑟2 overlap, then it is returned as the negative
number of the above definition.
In the GMQL framework, overlapping regions have negative distance while adjacent regions
have distance equal to 0. In the following picture three possible cases of distance calculation
are shown. In particular, let us consider the experiment blue region marked with 1, with left
coordinate 0 and right coordinate 40 and the anchor red region with left coordinate 55 and
right coordinate 160; their relative distance is calculated as: min(𝑎𝑎𝑎𝑎𝑎𝑎(55 − 40), 𝑎𝑎𝑎𝑎𝑎𝑎(0 −
160)) = min(15, 160) = 15. Let us consider, instead, the experiment blue region 2, which

24

overlaps with the anchor red region. In this case the same genomic distance definition must
be applied preceded by a minus sign. Thus, being the coordinates of the anchor region [55,
160] and the coordinates of the experiment region [110, 140], the distance is calculated as:
− min�𝑎𝑎𝑎𝑎𝑎𝑎(55 − 140), 𝑎𝑎𝑎𝑎𝑎𝑎(110 − 160)� = − min(85, 50) = − 50. The calculation for the blue
region 3 is similar to the one for the blue region 1 (not overlapping). In this case, it is adjacent
to the anchor red region, from which it has distance equal to 0.

Note 4: The following strings are legal, well-formed, genometric predicates:

● DGE(500), UP, DLE(1000);
● MD(100), DG(3000);
● DL(2000), DOWN;
● DLE(300).

Different orderings of the same distal clauses may produce different results. In the below
figure, we show an evaluation of the following two clauses relative to an anchor region:

A. MD(1), DGE(100);
B. DGE(100), MD(1).

In case A, the MD(1) clause is computed first, producing one region which is next excluded by
computing the DGE(100) clause; therefore, no region is produced as result. In case B, the
DGE(100) clause is computed first, producing two regions, and then the MD(1) clause is
computed, producing one region as result.

25

Similarly, the clauses:

A. MD(1), UP
B. UP, MD(1)

may produce different results: in case A, the minimum distance region is selected regardless
of its up/down stream position to the anchor, and then it is retained if and only if it belongs to
the upstream of the anchor, while in case B only upstream regions are considered, and the
one at minimum distance is selected.

Example A:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(dataType == "ChipSeq"; region: chr == chr2) Example_Dataset_2;
RES = JOIN(MD(1), DGE(150)) D1 D2;
MATERIALIZE RES INTO join_a;

In this GMQL statement, for each pair of samples, one from D1 dataset and one from D2
dataset, the MD(1) clause is computed first, extracting for each region in the D1 sample one
region from the D2 sample at minimum distance from the D1 sample region; for each extracted
pair of regions it is next computed the DGE(150) clause, which excludes those region pairs at
distance less than 150 bp. Therefore, in the considered example datasets no region is
produced as result.

RES:

Example B:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(controlId == "wgEncodeEH000930"; region: chr == chr2) Example_Dataset_2;
RES = JOIN(DGE(150), MD(1)) D1 D2;
MATERIALIZE RES INTO join_b;

In this GMQL statement, for each pair of samples, one from D1 dataset and one from D2
dataset, the DGE(150) clause is computed first, extracting for each region in the D1 sample
the regions from the D2 sample at distance not less than 150 bp from the D1 sample region;
then, the MD(1)) clause is computed, obtaining from such extracted D2 sample regions only
the closest to the D1 sample region. For each obtained pair of D1 and D2 sample regions, in
the output sample includes their concatenation region (default output, CAT), i.e., the region
with their minimum left coordinate and their maximum right coordinate.

26

RES:

Example 1:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = JOIN(MD(1), DGE(20); output: RIGHT; joinby: cell_karyotype) D1 D2;
MATERIALIZE RES INTO join_1;

For each pair of samples, one from D1 dataset and the other one from D2 dataset, this GMQL
statement searches for those regions of D2 sample that are at minimal distance from a region
of D1 sample and takes the first closest one for each D1 sample region, provided their distance
is greater than or equal to 20 bases and the joined D1 and D2 samples have a cell_karyotype
metadata attribute with the same value. Output regions include all attributes and values of
selected D2 sample regions, as well as attributes and values of the paired D1 sample region.
The output metadata are equal to the union of the metadata of the joined D1 and D2 samples
with their attribute names prefixed with their original dataset name (D1 or D2).

RES:

Example 2:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = JOIN(MD(1), DGE(20); output: RIGHT_DISTINCT; joinby: cell_karyotype) D1 D2;
MATERIALIZE RES INTO join_2;

This example replicates Example 1, but uses a different output option: RIGHT_DISTINCT
instead of RIGHT. RIGHT_DISTINCT allows to eliminate replicated regions in the output due
to joining with multiple regions in the other dataset sample. Output regions include all attributes

27

and values of selected D2 sample regions only. The output metadata are equal to the
metadata of the joined D2 samples, without prefixing their attribute names.

RES:

Example 3:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = JOIN(MD(1), DGE(20); output: CAT; joinby: cell_karyotype) D1 D2;
MATERIALIZE RES INTO join_3;

This example includes the same input datasets, genometric predicate and joinby condition as
in Example 1 and Example 2, but the output is produced as the concatenation of regions
selected by the genometric predicate (CAT). The output region attributes and values, as well
as metadata, are as in Example 1.

RES:

28

Example 4:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = JOIN(DGE(50), DLE(100); output: LEFT) D1 D2;
MATERIALIZE RES INTO join_4;

For each pair of samples, one from D1 dataset and the other one from D2 dataset, this GMQL
statement returns as output all those regions of D1 sample that are far no more than 100 bp
and no less than 50 bp from a region of D2 sample. Output regions include all attributes and
values of selected D1 sample regions, as well as attributes and values of the paired D2 sample
region. The output metadata are equal to the union of the metadata of the joined D1 and D2
samples with their attribute names prefixed with their original dataset name (D1 or D2).

RES:

Example 5:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = JOIN(DGE(50), DLE(100); output: LEFT_DISTINCT) D1 D2;
MATERIALIZE RES INTO join_5;

This example replicates Example 4, but uses a different output option: LEFT_DISTINCT
instead of LEFT. LEFT_DISTINCT prevents output samples to contain any replicate region
due to joining with multiple regions in the other dataset sample (differently from the LEFT
output option in the equivalent Example 4). Output regions include all attributes and values of
selected D1 dataset sample regions only. The output metadata are equal to the metadata of
the joined D1 dataset samples, without prefixing their attribute names.

RES:

29

Example 6:
D1 = SELECT(region: chr == chr2) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES = JOIN(DIST < 100; output: BOTH) D1 D2;
MATERIALIZE RES INTO join_6;

For each pair of samples, one from D1 dataset and the other one from D2 dataset, this GMQL
statement selects all regions of D1 sample such that their distance from a region in D2 sample
is less than 100 bases. Output regions include all attributes and values of selected D1 sample
regions, as well as attributes and values and (differently from other output options) coordinates
of the paired D2 sample region. The output metadata are equal to the union of the metadata
of the joined D1 and D2 samples with their attribute names prefixed with their original dataset
name (D1 or D2).

RES:

Note that Example 4, 5 and 6 show different uses of the output option. In Example 4, using
LEFT, the metadata are a union of the metadata attributes from the input D1 and D2 datasets,
prefixed with their dataset name. The schema of the output region attributes also corresponds
to the union of the attributes used in the two datasets. In Example 5, which uses
LEFT_DISTINCT, metadata attributes in the samples of the output dataset are only those of
the D1 (left) dataset samples, without any prefix. As far as the region attributes schema is
concerned, it is the same as the one of the D1 (left) dataset. In Example 6, using BOTH, the
metadata are treated as in the case of the LEFT (or RIGHT) option. As to the region part, the
behavior of the output option BOTH is the same of the output option LEFT with the difference
that the coordinates of the region from the right dataset are included in the output as additional
attributes of the region selected from the left dataset.

Example 7, 8, 9:
D1 = SELECT(region: chr == chr2) example_dataset_1;
D2 = SELECT(region: chr == chr2) example_dataset_2;
RES1 = JOIN(DLE(50); output: INT; joinby: cell_karyotype) D1 D2;
RES2 = JOIN(DLE(0); output: INT; joinby: cell_karyotype) D1 D2;
RES3 = JOIN(DLE(-30); output: INT; joinby: cell_karyotype) D1 D2;
RES4 = JOIN(DGE(-30), DLE(-20); output: INT; joinby: cell_karyotype) D1 D2;
MATERIALIZE RES1 INTO join_7;
MATERIALIZE RES2 INTO join_8;
MATERIALIZE RES3 INTO join_9a;
MATERIALIZE RES4 INTO join_9b;

30

For each pair of samples, one from D1 dataset and the other one from D2 dataset, provided
that they regard the same cell karyotype (indicated by the joinby condition which checks the
value of the correspondent metadata attribute cell_karyotype), the first JOIN statement returns
as output all the intersections (output option INT) between regions in D1 sample such that
their distance from a region in the D2 sample is less than or equal to 50 bases.

Differently, the second JOIN statement first selects all regions in D1 sample such that they are
adjacent to or overlap a region in the D2 sample (always satisfying the joinby condition), then
it selects for output only the intersections between the mentioned regions.

The third JOIN statement considers all regions in D1 sample such that they overlap with a
region in the D2 sample and their distance from such overlapping regions is not greater than
-30 bp (please refer to the top of this JOIN section for a review on genometric distance
calculation in the case of overlapping regions). This is only computed for samples satisfying
the joinby condition. The output includes only the intersection regions between a D1 sample
region and a D2 sample region considered.

The forth JOIN statement outputs only the intersections of all pairs of regions, one in D1
sample and one in D2 sample that satisfy the joinby condition, such that they overlap and their
distance is not greater than -20 bp and not lower than -30 bp (please refer to the top of this
JOIN section for a review on genometric distance calculation in the case of overlapping
regions).

For all JOIN statements, output regions include all attributes and values of selected D1 sample
regions, as well as attributes and values of the paired D2 sample region, and the output
metadata are equal to the union of the metadata of the joined D1 and D2 samples with their
attribute names prefixed with their original dataset name (D1 or D2).

RES1, RES2, and RES3:

Example 10:
D1 = SELECT(region: chr == chr4) Example_Dataset_1;
D2 = SELECT(region: chr == chr4) Example_Dataset_2;
RES = JOIN(DGE(0), DLE(0); output: LEFT; joinby: cell_karyotype) D1 D2;
MATERIALIZE RES INTO join_10;

For each pair of samples, one from D1 dataset and the other one from D2 dataset, provided
that they regard the same cell karyotype (indicated by the joinby condition which checks the
value of the correspondent metadata attribute cell_karyotype), this GMQL statement returns
as output only the D1 sample regions that are adjacent to a D2 sample region.

31

RES:

Example 11:
D1 = SELECT(region: chr == chr5) Example_Dataset_1;
D2 = SELECT(region: chr == chr5) Example_Dataset_2;
RES = JOIN(DL(0); on_attributes: score; output: INT) D1 D2;
MATERIALIZE RES INTO join_11;

This GMQL statement shows the use of the equi predicate option, with syntax on_attributes.
In case both the input D1 and D2 datasets do not include the attribute score in their schema
(i.e., as region attribute), the output dataset is empty. Assuming that score is present as region
attribute in both datasets, for each pair of samples, one from D1 dataset and the other one
from D2 dataset, the statement only matches those regions in D1 sample with the regions in
D2 sample that have the same value for their score region attribute.
Then, the JOIN first selects all matched regions in D1 sample such that they overlap a matched
region in D2 sample, and then it selects for output only the intersections between the selected
regions mentioned. Note that region overlap is evaluated only for regions located on the same
strand or with unknown strand (the latter one is the case of the rightmost region of the D2 red
sample in the below screenshot from the Integrated Genome Browser – IGB, where regions
with unknown strand are represented as those on positive strand).
Output regions include all attributes and values of selected D1 sample regions, as well as
attributes and values of the overlapped D2 sample region; the output metadata are equal to
the union of the metadata of the joined D1 and D2 samples with their attribute names prefixed
with their original dataset name (D1 or D2).

RES:

32

Example 12:
D1 = SELECT(region: chr == chr4) Example_Dataset_1;
D2 = SELECT(region: chr == chr4) Example_Dataset_2;
RES = JOIN(MD(1), UP; output: RIGHT) D1 D2;
MATERIALIZE RES INTO join_12;

This GMQL statement shows the use of the upstream clause, with syntax UP (or UPSTREAM),
in the genometric predicate. For each region in each D1 dataset sample, this genometric
predicate first considers only the region in a D2 dataset sample at minimum distance
(minimum distance clause MD(1)); then, it checks if such D2 dataset sample regions are in
the upstream genome with respect to the regions of the D1 dataset sample, taking into account
their strand.
For each pair of samples, one from D1 dataset and the other one from D2 dataset, in the
positive strand UP is true for those regions of the paired D2 sample whose right end is lower
than, or equal to, the left-end of the paired D1 sample regions; in the negative strand UP is
true for those regions of the paired D2 sample whose left end is higher than, or equal to, the
right end of the paired D1 sample regions.
For all the remaining aspects (i.e., selection of output region among those in the upstream
genome, output metadata and region attributes and values), the statement performs as the
equivalent one without upstream clause (see description of Example 1).

RES:

Example 13:
D1 = SELECT(region: chr == chr4) Example_Dataset_1;
D2 = SELECT(region: chr == chr4) Example_Dataset_2;
RES = JOIN(DOWNSTREAM, MD(1); output: RIGHT) D1 D2;
MATERIALIZE RES INTO join_13;

This GMQL statement replicates Example 12, but in the genometric predicate instead of the
upstream clause it uses the downstream clause, with syntax DOWNSTREAM (or DOWN), and
the order of the clauses is different with respect to Example 12. (Note that the clauses in the
genometric predicate are evaluated in the order in which they are written.) The downstream
clause requires that the remaining part of the genometric predicate (in this case the minimum
distance clause MD(1)) holds only on the downstream genome with respect to the regions of
the anchor D1 dataset, taking into account their strand.
For each pair of samples, one from D1 dataset and the other one from D2 dataset, in the
positive strand DOWN is true for those regions of the paired D2 sample whose left end is
higher than, or equal to, the right end of the paired D1 sample regions; in the negative strand
DOWN is true for those regions of the paired D2 sample whose right end is lower than, or
equal to, the left end of the paired D1 sample regions.

33

For all the remaining aspects (i.e., selection of output region among those in the downstream
genome, output metadata and region attributes and values), the statement performs as the
equivalent one without downstream clause (see description of Example 1).

RES:

12) COVER

Note 1: COVER and its three variants (FLAT, SUMMIT, and HISTOGRAM), which are
described in the following, do not have default arguments (i.e., COVER() DSin does not
compile); minAcc and maxAcc must always be specified.

Note 2: Given any two integer numbers k and n, minAcc and maxAcc can be optionally
expressed as functions of ALL, with the following possible structures:

• ALL / n;
• (ALL + k) / n.

The division is to be considered as an integer division (e.g., 5 / 2 = 2).

Note 3: In groupby option (which is one of the possible metajoin options of GMQL) different
alternatives are available with respect to dot-separated prefixes in case present for metadata
attribute names:

• metadata_attribute_name: it matches all attributes that are equal to OR end with the
dot-separated suffix specified name (regardless additional metadata_attribute_name
dot-separated prefixes not explicitly specified);

• EXACT(metadata_attribute_name): it matches all attributes that are equal to the
specified name (without any prefixes);

• FULL(metadata_attribute_name): it matches two attributes if they end with the
specified name AND their full names are equal.

Example:
D1 = SELECT(region: chr == chr1) Example_Dataset_1;
D2 = SELECT(region: chr == chr2) Example_Dataset_2;
RES1 = COVER(1, 2) D2;
RES2 = COVER(2, 2) D2;
RES3 = COVER(2, 3) D1;
MATERIALIZE RES1 INTO cover_ex1;
MATERIALIZE RES2 INTO cover_ex2;
MATERIALIZE RES3 INTO cover_ex3;

34

The figures below show the results of COVER with minAcc and maxAcc parameter values set
respectively to (1, 2), (2, 2) and (2, 3). Note that in the figure cases ALL = 3; so, for instance,
COVER(2, 3) provides the same result as COVER(2, ALL).

RES1 and RES2:

RES3:

Example 1:
D = SELECT(region: chr == chr1) Example_Dataset_1
RES = COVER(2, ANY) D;
MATERIALIZE RES INTO cover_1;

This GMQL statement produces an output dataset with a single output sample. The COVER(2,
ANY) operation considers all areas defined by a minimum of two overlapping regions up to
any amount of overlapping regions in the input dataset samples. The figure below shows how
no regions are created in the output where only one or no region in the input samples is
present. Output region attributes include only region coordinates and Jaccard indexes
(JaccardIntersect and JaccardResult). Metadata are the union of the input metadata, as shown
in figure.

35

RES:

Example 2:
D = SELECT(region: chr == chr2) Example_Dataset_2;
RES = COVER(2, 3; groupby: cell; aggregate: min_pvalue AS MIN(pvalue)) D;
MATERIALIZE RES INTO cover_2;

This GMQL statement computes the result grouping the input D dataset samples by the values
of their cell metadata attribute, thus one output RES dataset sample is generated for each cell
value; output regions are produced where at least 2 and at most 3 regions of grouped samples
overlap, setting as attributes of the resulting regions the minimum pvalue of the overlapping
regions (min_pvalue) and their Jaccard indexes (JaccardIntersect and JaccardResult).

RES:

Example 3:
D = SELECT(region: chr == chr2) Example_Dataset_2;
RES = COVER(1, ANY; groupby: cell, cell_karyotype) D;
MATERIALIZE RES INTO cover_3;

Given the D dataset, for each value of cell_kariotype metadata attributes of each value of cell
metadata attribute, this GMQL statement produces output regions where at least a region of
the given cell_kariotype for the given cell exists, grouping cell values (first) and cell_kariotype
values (then); output regions have only their Jaccard indexes (JaccardIntersect and
JaccardResult) as their attributes. This statement is typically used to extract any possible DNA

36

region where a region for a given cell line and karyotype exist; by rising the minAcc parameter
(e.g., to 2, 3, or more), the same statement can be used to extract consensus DNA regions
(i.e., DNA regions with higher probability of containing actual signal, in the example case a
region for a given cell line and karyotype).

RES:

Cover variants

Example 1:
D = SELECT(region: chr == chr3) Example_Dataset_2;
RES = FLAT(2, 4; groupby: cell) D;
MATERIALIZE RES INTO flat_1;

This GMQL statement computes the result grouping the input D dataset samples by the values
of their cell metadata attribute, thus one output RES dataset sample is generated for each cell
value. Output regions are produced by concatenating all regions which would have been used
to construct a COVER(2, 4) statement on the same dataset; Jaccard indexes
(JaccardIntersect and JaccardResult), as well as metadata, are set as in the COVER case.

RES:

37

Example 2:
D = SELECT(region: chr == chr3) Example_Dataset_2;
RES = SUMMIT(2, 4; groupby: cell) D;
MATERIALIZE RES INTO summit_1;

This example replicates Example 1, but uses SUMMIT operation instead of FLAT operation.
Also this GMQL statement computes the result grouping the input D dataset samples by the
values of their cell metadata attribute, thus one output RES dataset sample is generated for
each cell value. Whereas, output regions are produced by extracting the highest accumulation
portions of overlapping (sub)regions; Jaccard indexes (JaccardIntersect and JaccardResult),
as well as metadata, are set as in the COVER case.

RES:

Example 3:
D = SELECT(region: chr == chr3) Example_Dataset_2;
RES = HISTOGRAM(2, 4; groupby: cell) D;
MATERIALIZE RES INTO histogram_1;

This example replicates Example 1 and Example 2, but uses HISTOGRAM operation instead
of FLAT or SUMMIT operations. Also this GMQL statement computes the result grouping the
input D dataset samples by the values of their cell metadata attribute, thus one output RES
dataset sample is generated for each cell value. Output regions are produced by dividing
results from COVER in contiguous sub-regions according to the varying accumulation values
(from 2 to 4 in this example): one region for each accumulation value, which is assigned to the
additional AccIndex region attribute (see figure below for a visual explanation). Jaccard
indexes (JaccardIntersect and JaccardResult), as well as metadata, are set as in the COVER
case.

38

RES:

Example 4:
D = SELECT(region: chr == chr3) Example_Dataset_2;
RES = HISTOGRAM(ALL/2, (ALL+1)/2; groupby: cell) D;
MATERIALIZE RES INTO histogram_2;

In this GMQL statement, given that the cardinality of the D dataset samples regarding
chromosome chr3 is of 3 samples, ALL = 3. By computing the arithmetic operations in this
example, we obtain minAcc = 1.5 and maxAcc = 2; therefore, the output regions are produced
exactly as for an HISTOGRAM(1, 2) operation (see above introductory Example). For a visual
explanation, see figure below, with AccIndex value on each of the output RES regions (see
also previous example 3).

RES:

	1) SELECT
	2) MATERIALIZE
	3) PROJECT
	4) EXTEND
	5) ORDER
	6) GROUP
	7) MERGE
	8) UNION
	9) DIFFERENCE
	10) MAP
	11) JOIN
	12) COVER
	Cover variants

